
CHAPTER 1

Möbius inversion and the Principle of
Inclusion-Exclusion (PIE) are discrete derivatives

Möbius inversion and the Principle of Inclusion-Exclusion (PIE)
are discrete derivatives on particular posets, analogs of (backward)
discrete difference. It’s just order theory, and it algebraicizes as “in-
cidence algebras”, analogs of group algebras.

The picture is:

• discrete difference = line
Poset:
0 // 1 // 2 // · · ·

Difference kernel
(what you pair a function against to differentiate):
0 −1 1

• PIE = hypercube
Poset Difference kernel

{a} // {a, b}

{}

OO

// {b}

OO
−1 1

1 −1

• Möbius inversion = hyperbox
(several steps in each direction), and is a combo of the above

Poset Difference kernel
3 // 6 // 12

1

OO

// 2

OO

// 4

OO 0 −1 1

0 1 −1

Möbius inversion seems mysterious at first because it is presented
as a (Dirichlet!) convolution operator (likely the first convolution a
novice reader has seen), and “square-free” sounds like it has sub-
tle number-theoretic meaning (it doesn’t: it’s just the order picture
above).

We review each case, emphasizing the connections.
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1. Discrete difference

Given a sequence a0, a1, . . . , one can integrate it, getting the se-
quence of partial sums:

(Σa)n :=
∑
i≤n

ai

Inverse to this (corresponding to differentiation) is successive differ-
ences:

(∆b)n := bn − bn−1

(and (∆b)0 = b0).
These two operations are inverse, which is the discrete funda-

mental theorem of calculus: ∆
∑

is the difference of partial sums,
while

∑
∆ is the telescoping sum.

2. PIE

fixme: The classic PIE is subtle from this POV, and I don’t really
understand it; see TEX source for details.

Given a function on a power set f : P(X) → R, one can integrate
it: (∫

f
)
(A) :=

∑
B⊂A

f(B)

Inverse to this is the XXXXXXXXXXXXX
We illustrate with the classic application of the PIE as counting

derangements (fixed-point-free permutations). The idea is that “per-
mutations with fixed set A” is the derivative of “permutations that
stabilize A (and possibly more besides)”, and the latter is easy to
count (it’s (n − k)!, where k = |A|); note that the derivative is in the
opposite of the usual order: A ≤ B iff A ⊃ B.

Formally, a permutation σ stabilizes A iff the fixed set of σ con-
tains A: A ⊂ Fixσ. The permutations that fix A are the identity on
A, and arbitrary on X \ A, so they are exactly SX\A, and there are
|X \ A| ! = (n − k)! of them.

Given A ⊂ X, Fix A are all disjoint Stab A =
∐

B⊃A Fix B

to count derangements which fix particular subsets: let FA be the
set of permutations that fix A ⊂ X, look at P(X), and OH! The point
is that you have two functions: everything fixes ∅, but we want to
count those that fix *exactly* the empty set

Incidentally, how many permutations have fixed set A for A 6=
∅? That’s just a derangement of X \ A, so it’s [(n − k)!/e].
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3. Incidence algebras

The notion of an incidence algebra algebraicizes this: define a
product on the module of “functions on (intervals in) a poset” via
convolution, and then the differentiation (and integration) operators
become convolution operators.

Formally:
1

Most familiar interesting application of PIE is counting derange-
ments (fixed-point-free permutations).

BTW, why is Möbius inversion interesting? Combinatorially it’s
cute but not deep. It’s interesting b/c summation (of arithmetic func-
tions) is interesting (related to totient, divisors, zeta function)

Wiki:
See wiki page on incidence algebras ...and wikify this
convolution: The formula (f ∗ g)(x) =

∫
yz=x

f(y)g(z) ...makes
sense without any *group* structure, and you don’t even need a
complete operation. (partial magma)

wiki: - link semigroup algebra / monoid algebra to group ring,
and discuss there

! you can’t in general differentiate ! EG, in a group algebra,
the group of units is {±g} (notably, ζ is not invertible) Concretely,
in Z[Z/2], ζ(1 − g) = 0.

1Why a ≤ b? You might consider a < b (strictly less), but this isn’t as good, as
it’s not reversible. (It does work for functions on the naturals though, where you
can use forward differences instead of backward differences, but this is unusual.)
For instance, you never capture the value of top elements, and bottom elements
are indistinguishable from the empty set: if you “integrate” (via a < b) a function
on the poset with a single element, you get zero.


