
Solving linear equations

1 Solving one equation: review

Given a system of linear equations Ax = b, we can solve this equation by
Gauß-Jordan elimination. By solve we mean:

• determine if a solution exists

• if so, find all possible solutions, which effectively is:

– find the kernel of A (solve the homogeneous equation Ax = 0)

– find a particular solution

We do this by reducing the augmented matrix [A|b] to a row-reduced ech-
elon matrix [A ′|b ′] (note that b changes to b ′ in the process), from which
we can read off the answer.

Suppose A ′ has k rows (that is, A has rank k), and the pivots are in
columns c1, . . . , ck. Then:

• a solution exists iff b ′ vanishes after the kth entry:
i.e., it’s b ′ = (b ′

1, b
′
2, . . . , b

′
k, 0, . . . , 0) – this is because otherwise we

have a 0 = 1 row.

• to find all possible solutions

– the kernel of A is exactly “the pivot equals minus the later terms
in that row”

– a particular solution is “put the b ′
i coordinate in the cith entry

of x (formally, xci
= b ′

i).

The above notation is confusing, but the idea is simple – let’s illustrate.
For instance, if [A ′|b ′] is 1 2
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(I’ve left spaces for zeros, for readability), then:
The pivots1 (the leading 1s in some rows) are x1 and x3, while x2 is the

free variable: we can set it to whatever we want (b/c the pivots can be
adjusted to compensate).

The solution is:

• the system is consistent (meaning it has a solution), as we have zeros
opposite the zero rows

• the solution is given by:

– the kernel is the subspace of R3 such that x1 + 2x2 = 0 (so x1 =

−2x2) and x3 = 0; in general we’d have more equations, but
they’d all be of this form: some pivot equals negative the later
coordinates in that row (or zero if there aren’t any). So ker A is−2x2

x2

0


For clarity, one often writes r, s, t for the free variables, so

ker A =

−2r

r

0


– A specific solution in x0 = (4, 0, 7) (i.e., x1 = 4, x2 = 0, x3 = 7):

the pivots tell us where to put the numbers so they’ll end up in
the right place.

Thus the general solution is:

x0 + ker A =

4

0

7

 +

−2r

r

0

 =

4 − 2r

r

7


1I don’t know if this usage is correct: the point is that these are the “unfree” variables.
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2 Solving many equations

The above shows how you can solve one particular equation, but what if
you want to solve many, like Ax = bi. Maybe every day your boss comes
by and gives you a bi to solve, and you really don’t want to have to do
everything again.

What’s the solution? Well, every time you row reduce [A|b], you’ll get
the same A ′, but maybe a different b ′ – so all you need to do is record the
sequence of row moves and apply this to each bi.

Recall that a row operation is just left-multiplication by an elemen-
tary matrix, so multiplying these together yields a matrix such that left-
multiplication by it does all of the row operations. Call this matrix R, so
RA = A ′, and thus R[A|b] = [A ′|b ′].

So given A, compute R (and in the process A ′) and you’re set! Now
given b, just compute b ′ = Rb and you can read the solutions to A ′x = b ′

straight off the matrix as above.
How can you compute R? Concretely, you can do this by looking at

the augmented matrix [A|I] – then Gauß-Jordan yields [A ′|R]: each row
operation you do on the A part gets recorded on the I part.

3 Special cases

3.1 Span

Given a collection of vectors 〈v1, . . . , vl〉 where vi ∈ Rn, asking “is w in
the span of 〈vi〉, and if so, express it” is exactly the same as solving the
equation Ax = b where A is the column matrix of the vi and b = w.

If we want to solve this for any w that’s handed to us, just find A ′ and
R (as above), and run the machine.

3.2 Invertible Matrices

A particularly interesting case is when the rref matrix A ′ is the identity
matrix In (just 1s on the diagonal); note that this can only possible occur
if A is square, i.e., a map A : Rn → Rn between spaces of the same dimen-
sion.
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In that case there’s no kernel (the kernel is xi = 0 for all i), and the
image is the whole space – the solution is exactly x = b ′.

In that case RA = In, and R = A−1.
For instance, for A = ( 5 6

4 5 ), we get A−1 =
(

5 −6
−4 5

)
; in equations, Ax = b

is solved by applying A−1 to both sides and getting A−1Ax = A−1b so
x = A−1b (which we’ve also called b ′).
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