
INTRO TO DUALS OF VECTOR SPACES

NILS R. BARTH

To Glenna

ABSTRACT. This note explains dual vector spaces in some depth,
to a bright student without much hard-core abstract math back-
ground; say, a chemist.
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1. BRIEFLY

V∗, the dual to a vector space, is defined by V∗ := Hom(V,K),
i.e., the (contravarient) functor represented by the base field. We’ll
explain in more detail, and give far more intuition.

1.1. Asking the right questions. The answer to the question “what
is the dual space” is brief; it’s another question to put it in context
and understand why we care, how to work with it. Context and
generality are essential because if you only have one example, it’s
impossible to know which features are specific to that example. For
instance, the real numbers are an example of a field – but to under-
stand the real numbers and how they’re special, one needs to know
what is generally true about fields and what is specific to the real
numbers.

It’s yet another question to see cool examples and applications,
to appreciate the power and usefulness, and to get intuition from
working with it.

Hopefully this note is an example of how to ask questions prop-
erly, and how to answer them properly. It’s quite common, especially
in beginning mathematics (and by beginning mathematicians), to be
excessively terse: many questions, prima facie, admit a terse answer
– but we don’t want just answers: we want understanding.

1.2. Example to keep in mind. Duals are particularly confusing ei-
ther when you try to learn them completely abstractly, or when you’re
always working in terms of a basis. A good happy medium is to
work with the space of polynomials (of a given degree), as we’re not
too wedded to any particular basis for it, and we can describe con-
crete elements of its dual. It has enough structure (so that we can
work with it), but not too much (so that we get confused) – so long
as you forget about the multiplication (grin).

FIXME: You should work through all this using polynomials, and
I should write up examples using polynomials everywhere; the key
examples are: evaluation at a point, and evaluation of a derivative at
a point.

FIXME: also, note that this is a good way of seeing how the dual
of a direct sum is a direct product (and the dual of a direct product
is much bigger still...): in the basis dual to 1, x, . . . , xn, . . . , “evalua-
tion at a” has vector 1, a, . . . , an, . . . , which doesn’t terminate. (and
the pairing only makes sense b/c all polynomials terminate; evalua-
tion at a point doesn’t make sense for a general formal power series;
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indeed, we can define “radius of convergence” in terms of the sub-
space on which various “evaluate at points” are defined.)
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2. COORDINATES

Vectors in Rn can be thought of as column matrices, while elements
of (Rn)∗, called covectors can be thought of as row matrices.

The main reason for this is that way the evaluation pairing of a
covector with a vector is simply matrix multiplication.

More deeply, this reflect the isometry Hom(V,W) = V∗ ⊗W for
finite dimensional vector spaces, and illuminates the structure of lin-
ear transforms.

You can think of a linear transform as a matrix, which you can
break up as a bunch of column vectors, or a bunch of row vectors.

The column vector POV says:
“a linear transform is determined by the vectors in W that it sends a
basis of V to”

The row vector POV says:
“a linear transform is determined by the coordinates inW that it eval-
uates vectors in V to”

Also, note that given a row and a column, if you multiply them the
opposite way, you get a matrix! (And not just any matrix – a rank 1
one.) This story goes on for a while; we won’t pursue it here.
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3. SOME CATEGORY THEORY

Why do we do this?
Firstly, the dual is a (contravarient) functor: if you want to under-

stand it, you need to understand functors.
Second, the fact that the double-dual of a finite-dimensional vec-

tor space is “naturally” isomorphic to the original vector space is
a statement about natural transforms of functors, so you’ll need to
learn that, too.

Thirdly, linear algebra without category theory is confusing: all
the category theory is there, lurking, and if you try to ignore it, you’ll
suffer. We may as well make it explicit.

Fourthly, category theory is a beautiful and fundamental part of
mathematics, showing common algebraic underpinnings of widely
disparate areas, and providing important insight and unification.

Lastly, linear algebra is a showcase of category theory – many of
the important concepts are here, and it’s an easy enough context that
you can do a lot of math. I like to say that with easy objects, we can
build up complex structures: what’s interesting are the connections
and interrelations of the objects: with complicated objects, even un-
derstanding the objects is difficult and interesting.

lotta category theory use EGs from set theory
(egs of ”is this a category?”)
functors; e.g.s from set theory (esp. power set – both co-varient

and contravarient)
when Hom-sets have structure
the only structure one assumes by default on Hom-sets is a set.

sometimes there’s more (and what we requires is that composition is
a good map) (remember, we can put whatever structure we want on
the objects, but category theory only sees the maps)

It’s particularly interesting when Hom-sets have the same struc-
ture as the category itself (okay, it’s -very- interesting: you can use
the subject to study itself more) (egs: sets, top, algGeo, and of course
linear algebra)

in our case, Hom(V,W) has the structure of a vector space, and
composition is bilinear! (NB: not linear)

representable functors:
the identity functor is represented in Sets and VectSpace
exercises: show that power set contravarient functor is represented

by {0, 1}; (call it subobject classifier; get topoi) give a counting argu-
ment with finite sets to show that the power set covarient functor
cannot be represented.



6 NILS R. BARTH

(sidebar: words and pictures: commutative diagrams are as rig-
orous as words; people use words b/c they’re more familiar, more
linear, and easier to typeset. But (mathematical) reality isn’t words –
it just -is-, and words, diagrams – these are just attempts to capture
it.

Hom as a bifunctor (cute diagrams – spend a bit of time)
“Naturality” discuss natural transforms of functors (note that clearly

dual -cannot- be natural, as it’s contra-varient; more concretely, show
a diagram that doesn’t commute) eg of id -¿ power set for sets (x 7→
{x}) (have trivial EGs too)

the map V → V∗∗ always exists, and is a natural trans. of functors.
(if you deal with topological vector spaces, life gets more interest-
ing) for algebraic vector spaces, it’s always injective; hence for finite-
dimensional vector spaces, always isomorphism, so it’s a “natural
equivalence of functors”
V = Hom(K,V) → Hom(V∗, K∗) → Hom(V∗, K) = V∗∗ this is good

b/c it’s purely categorical
Duality of subsets
(this is a good example of a Galois connection)
(I think S∗ = {x ∈ V∗ | x(s) ≤ 1∀s ∈ S} works) (note that S∗∗ needn’t

equal S, but it always contains it, and S∗∗∗ = S∗ always; this closure-
type situation always occurs in Galois connections) (this is useful
in Economics, I think – and not well-known in math) (this makes
rigorous the “duality of polyhedra”, as in cube/octahedron etc. –
this latter makes a good example (try 2d first) – but note that that’s
actually a different story! That is, “put a vertex in the center of every
face” agrees with this duality, up to rescaling, for regular and semi-
regular polytopes, but -not- for general ones!)

(proof of properties: dual is inclusion-reversing (pure logic); dual
is convex (calculation); S ⊂ S∗∗ (pure logic); if S is convex, then
S∗∗ = S (trickiest bit – several ways to show: concretely, if x 6∈ S

and S is convex, then it’s separated by -some- hyperplane, etc. more
abstractly, convex means intersect of hyperplanes etc.) (okay, better:
it’s purely formal: double dual of half-space is the same half space,
so they’re closed. A convex set is an intersection of halfspaces, and
intersection of closed is closed.)

Free things
The similarity between sets and vector spaces is not accidental;

vector spaces are ”free objects” in some sense (get the details right)
in particular, introduce adjoints, esp the Free/Forget adjunction

What -are- duals? (put in the epilogue)
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involutions – indeed, even an equality can be considered a duality
of a sort – it’s two different ways of looking at something. (mention
pontryagin duality)
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Here’s a geometric way of seeing it:
vectors are points in space; equivalently, dim 1 subspaces (lines)

and magnitudes (unique except for 0): a point on the subspace
covectors are affine hyperplanes; equivalently, codim 1 subspaces

and magnitudes You can visualize that as “how far from the origin”
the hyperplane is.

To evaluate a covector and a vector, viewed this way: what multi-
ple of the vector lands on the hyperplane? Note that this is bilinear,
and well-defined except for when the line and the hyperplane are
parallel, meaning the vector is in the kernel of the covector (in par-
ticular, this works for 0)

Note that given an inner product of V , you get a duality between
vectors and covectors (viewed in this way) via perp: perp to a line is
a hyperplane.

This is ultimately coming from affine duality (galois connection):
V × V∗ → K, where x 7→ {v | v(x) = 1}

——————————— More ultimately, this comes from projec-
tive duality; the reason we get a problem with 0 is b/c we’re running
into the hyperplane at infinity, in some sense (this is a good example
of how we get “limits” and “degeneration” in algebraic geometry:
visually, take two lines in the plane that are intersecting. If you rotate
one, then their intersection will be one point for almost all points, but
then will blow up to being the whole line when they coincide.)
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The pairing V × V∗ → K gives a -host- of dualities, (especially for
K = R, as then you get an ordering)!

x 7→ {v | P}

...where P is: vx = 0: vector duality: closure is vector space closure,
dual is perp vx = 1: affine duality: closure is affine closure, dual is
...it is what it is: it’s “affine ‘perp’ ”. vx ≤ 1: convex (vector) duality:
closure is convex (vector) closure, meaning you have to include 0,
dual is convex dual.

You can get convex affine duality, but then you have to pair V with
Aff(V∗). This makes sense: the -affine- dual of a subset V can’t be
any -particular- subset of V∗: you could move it by any translation,
which corresponds to living in Aff instead of the original space. (er,
and by Aff I mean: it’s what you get if you include translations of V ,
together with linear duals)

Note that affine duality is ultimately coming from projective dual-
ity: points in PV correspond to hyperplanes in PV∗.

(and n generic points determine a hyperplane, while n generic
hyperplanes determine a point: nicest for n = 2, where “generic”
means “not equal”, hence the classical projective duality of the pro-
jective plane)
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4. BASES AND COORDINATES

This section is somewhat long and technical: I explain essentially
everything about bases and coordinates in linear algebra.

Note that a very good concrete space to work with when you want
a concrete space but not a specified basis is the space of polynomials.
In particular, there’s lots of ways of describing elements of the dual
without using coordinates. It’s a very good alternative to Kn, which
has a confusing basis, and V , which is just abstract.

It’s often useful for intuition and concreteness to work things out
in terms of a basis. However, you should also be cautious about
bases as they obscure the theory and the actual structure: if you can
do something in terms of a basis, doing it without choosing a basis
will generally clarify matters and deepen your understanding.

The most important theoretical task when doing a construction in
terms of a basis is to ask what happens when we change the basis.
Why does this matter so much? Because if we do something in terms
of a basis, and know what happens when we change the basis, then
we know the whole story independent of choice of basis.

4.1. Notation. We potentially have a great many bases at once: to
understand all the possibilities, we’ll want to understand two spaces,
V and W, and maybe two bases on each, and for any basis we also
have a dual basis on V∗, so we could get 8 bases! It’s easy to get
confused.

Further, the “correct” mathematical notation can obscure matters
further: one often denote the basis 〈e1, . . . , en〉 by Be or some such,
which is pretty verbose.

There’s lots of conventions, especially for duals.
One might use e1, . . . , en as a basis for V , and f1, . . . , fm as a basis

forW.
Or e1, . . . , en as a basis for V , and f1, . . . , fn as another basis for V .
Or e1, . . . , en as a basis for V , and e ′

1, . . . , e
′
n as another basis for V .

For duals, one might use ei as a basis for V , and e ′
i (or e∗i , or fi, or

fi) as the dual basis for V∗

FIXME: be consistent below!
Lastly, I use φ and ψ for the coordinates maps in analogy with

manifolds, where we use these for coordinate patches.

4.2. Categorical background. The key to understanding the rela-
tionship between (abstract) linear algebra and (coordinate) matrix
algebra is:
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“Rn and matrices are a skeletal subcategory of vector spaces and
linear maps”

Given a category C, a skeletal subcategory S is specified by a collec-
tion of objects {Ai} (called the skeleton), with exactly one from each
isomorphism class of C. IE, for all object X ∈ C, there is a unique Ai
such that X ∼= Ai. We let S be the full subcategory on {Ai}: that is, the
objects are the {Ai}, and the maps are all maps1 between them.

[Formally: the inclusion of a skeletal subcategory has as adjoint:
“send an object to the element of the skeleton that it’s isomorphic
to”. This doesn’t specify an adjunction: it’s not just two functors,
but -also- requires a consistent -identification- of the two Hom-sets.
We can provide this by specifying isomorphisms φX : Ai

∼−→ X for all
objects; this is the unit of the adjunction, and this is a good example
of how two functors and a unit determine an adjunction.

That is, a skeletal subcategory is reflective (and coreflective), and
the isomorphisms are the (co)reflection.]

Given a skeletal subcategory, you can “reduce most questions” to
questions inside the skeleton. This statement is intentionally vague:
it’s rather like “first-order logic”: any statement about a specific dia-
gram can be so reduced, but questions about the category as a whole
can’t be reduced: see below under “Limitations of skeletons”.

How does this work?
Given an objectX ∈ C, we haveφX : Ai → X, so any question about

the object X can be answered by answering the (transfered) question
about its isomorphic object Ai. EG, the space of (orthonormal) 1-
frames in Rn is (naturally) homeomorphic to Sn−1, so the space of 1-
frames in any real vector space V of dimension n is homeomorphic
to Sn−1.

Now given two objects X, Y ∈ C, with φX : Ai → X and φY : Aj →
Y, we have

(φ−1
X × φY)∗ : Hom(Ai, Aj)

∼−→ Hom(X, Y)

so any question about the Hom-object can be reduced to within the
skeleton.

For instance, every linear map between finite-dimensional vector
spaces has a rank, by defining the rank of a matrix and representing
the linear map as a matrix. We can also prove this directly though,

1In the notion of a subcategory, we also want to allow ourselves to throw out
maps. So for instance the category of vector spaces and injective linear maps is a
subcategory of vector spaces and all linear maps
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and this is a good example of how intrinsic definitions offer more
insight.

Similarly any other diagram can be reduced into the skeleton.
A caution: note that we also have EndX ∼= EndAi by

(φ−1
X × φX)∗ : Hom(Ai, Ai)

∼−→ Hom(X,X)

but that we need to use the same identification each time.
Lastly, note that isomorphisms between two objects can be identi-

fied with automorphism of a fixed object:

Iso(X, Y) ∼= Aut(Ai)

if Ai ∼= X ∼= Y. Note that Iso(X, Y) is a torsor (for Iso(Y) and for
Iso(X)op), and Aut(Ai) is a group (recall that a group is exactly a
pointed torsor): the point comes from the isomorphism φYφ

−1
X : X →

Ai → Y.

4.3. Matrices as a skeletal subcategory for linear maps. We now
work out what this abstraction means for the specific case of linear
algebra.

So for vector spaces and linear maps, every vector space V is iso-
morphic to Rn for some n: in fact, for n = dimV .

Similarly, Hom(V,W) is isomorphic to Mat(m,n) (m×nmatrices,
IE, m rows and n columns), where n = dimV,m = dimW (note the
reversal: rows is output, columns is input), via Rn ∼= V and Rm ∼= W,
and maps Rn → Rm have natural matrix representations.

A choice of isomorphism Rn ∼−→ V is exactly the same as a choice of
basis. The correspondence is given by:

• given a basis e1, . . . , en, we get a map Rn → V by (a1, . . . , an) ∈
Rn 7→ a1e1 + · · ·+ anen ∈ V . This is an isomorphism by defi-
nition of basis.

• given an isomorphism φ : Rn ∼−→ V , we get a basis e1, . . . , en
of V by e1 = φ(1, 0, . . . , 0), e2 = φ(0, 1, 0, dots, 0), etc. – just
push the standard basis forward. This is a basis by definition
of isomorphism.

Okay, so given a map T : V → W, how do we express it in terms of
a basis, from this point of view? A basis e1, . . . , en of V corresponds
to φe : Rn ∼−→ V , and a basis f1, . . . , fm ofW corresponds to ψf : Rm ∼−→
W.
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So we get a diagram

Rn

φe

��

Rm

ψf

��
V

T // W

and to get a matrix we need a mapM : Rn → Rm, IE, we need a map

Rn

φe

��

M //___ Rm

ψf

��
V

T // W

“such that the diagram commutes”, IE it doesn’t matter which path
you follow: the result is the same – this requirement just means that
M represents T : it’s not some arbitrary map.

This is easy to get: it’s

M = ψ−1
f Tφe

just reverse ψf! This formula tells us a lot: see how changing the
basis of the domain acts on the right, while changing the basis of
the codomain acts on the left – but with an inverse. Each of these is
reflected in the nuances of the computations.

Also, note that it says “our input is in terms of the basis e; our
output is in terms of the basis f”: input comes in on the right and
comes out on the left. Yes, this is confusing: it’s because we want to
write T(x) (we want to write T on the left), which means the x comes
in the right side of T and comes out the left: think ofU(T(x)). In some
places they do composition and matrix multiplication the other way:
(x)T and ((x)T)U. (This especially makes sense in languages that put
the verb last, like Deutsch, I think; our f(x) comes from putting the
verb before the object.)

Now write T in terms of other bases, e ′ and f ′, getting M ′; clearly
M ′ = ψ−1

f ′ Tφe ′ How can we get M ′ from M? Let’s look at fixing
the base on V : algebraically, we need to multiply M on the right by
Be ′→e = φ−1

e φe ′ .
How can we interpret this? Be ′→e is the identity on V , with input

written in basis e ′, and output written e.
Note that this is just a map Rn → Rn: we cannot interpret it as a

map T : V → V , written in some basis 〈gi〉, because it would have to
be of the form: φ−1

g Tφg.
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However, what makes this confusing is that this very matrix admits
two more interpretations, if we interpret it as a map V → V in the
basis 〈ei〉 or 〈e ′

i〉:
In the basis 〈ei〉, we get:

Be ′→e = φ−1
e φe ′ = φ−1

e φe ′φ−1
e φe

In the basis 〈e ′
i〉, we get:

Be ′→e = φ−1
e φe ′ = φ−1

e ′ φe ′φ−1
e φe ′

IE, the map Te→e ′ : V → V , where T = φe ′φ−1
e , such that T(ei) = e ′

i (it
sends ei to the ith basis vector of Rn, which it sends to e ′

i)
FIXME: ack!!!!! Okay, so this matrix tells you how to rewrite coor-

dinates for e ′ as coordinates for e, but it represents (in both the basis
e and the basis e ′???) the map that sends e → e ′???

We work this out in much, much more detail below.

4.4. Dual of a basis. One interpretation of duals are as “coordinates”.
More correctly: “a element of V∗ is a coordinate on V , and a basis

for V∗ is a system of coordinates on V”
Given a basis e1, . . . , en of V , we get a dual basis f1, . . . , fn of V∗,

given by:
“fi(v) is the coefficient of ei when you express v in terms of the basis
e1, . . . , en”

In symbols, if v = a1e1+ · · ·+anen (where ai ∈ K), then fi(v) = ai.
Note that each fi depends on the entire basis e1, . . . , en:

“you can’t take the dual of a vector – only the dual of a basis”
More formally, if you change a basis, leaving one vector fixed, the

dual change of the dual basis needn’t leave the dual vector fixed.
This will be clearer when we discuss the effect of change of basis

on the dual.
This point is particularly important in differential geometry: dxi

is canonical, but ∂/∂xi isn’t (it depends on the whole basis – IE, it’s
kinda bad notation)

4.5. Duals in coordinates. NB: dual map is transpose

4.6. Change of basis on a vector space. Given two bases e1, . . . , en
and f1, . . . , fn for a vector space V , we can ask how to switch between
the two.

That, if v = a1e1+ · · ·+anen = b1f1+ · · ·+bnfn, then how can we
express 〈bi〉 in terms of 〈ai〉? This is a question about the dual space,
IE, it’s about coordinates, so we will demur. You’ll thank me for this
– this can get pretty confusing, with all the back and forth.
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FIXME: Let’s first write the matrix Me→f;e; that is, the matrix that
takes 〈ei〉 to 〈fi〉, expressed in the basis 〈ei〉. That is, Te→f, the lin-
ear transform of V defined by T(ei) = fi is well-defined; we’re just
writing it in a basis.

4.7. Classification of maps V → W. We will illustrate change of
basis by recalling a classification theorem, and showing the analog
for duals.

Theorem 4.1. Recall that maps V → W are “classified” by their rank. In
coordinates, this says that if T : V → W has rank k, then there are bases for
V andW such that the matrix for T has the form like:

1 0

0 1 0

0 1 0

0 0 0


IE, it has k ‘1’s on the diagonal, followed by ‘0’s on the diagonal, and ‘0’s
everywhere else.

Proof. The proof is by row and column reduction. That is, if dimV =
n and dimW = m, then a choice of basis for T expresses it as an
m × n matrix: m rows (because that’s the output), and n columns
(because that’s the input).

mneumonic for left and right: left action is by row operations;
right action is by column operations left action act on column vec-
tors; given a set of vectors, it acts on each column in the same way
in particular, it doesn’t change the columns around, hence it must be
acting by row operations dually for a right action

intrinsically defined �

A better formulation of the above result is:

Definition 4.1. Say that two diagrams T : V → W and T ′ : V ′ → W ′

are equivalent if there are isomorphisms φ : V
∼−→ V ′ and ψ : W → W ′

such that this diagram commutes:

V
T //

φ
��

W

ψ
��

V ′ T ′
// W ′

Even more formally, consider the category of functors

(· → ·) → (Vect,LinMap)
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where objects are functors between these categories and morphisms
are natural transforms of functors. This is called the quiver category,
because it’s a bunch of arrows.

Concretely, an object is just “put a vector space at each dot, and a
map on each arrow”, and a map is “maps between the corresponding
objects such that everything commutes”.

Then two diagrams are equivalent if and only if they are isomor-
phic in the quiver category.

first do for two separate spaces, then for one space (Jordan is harder)
(now that I have language of quivers, life is good)

5. VECTORS, COVECTORS AND TRANSPOSES

(cute way of visualizing the duality: horizontal vectors and ver-
tical vectors. Note that this requires a basis cute: this is actually
identifying V = Hom(K,V) and V∗ = Hom(V,K) – that’s what the
matrices mean) (transposes as making sense once you have a basis)
(note that adjoints always make sense, even for square matrices!)

(note that you can always glue on a one-dimensional vector space
;-)

with this, you can deal with functors, but not with such things as
V ⊕ V∗

also: get bases for symmetric power, alt power, and even other
schur functors!

5.1. Quadratic forms as matrices. Lastly, note that quadratic forms
can be represented as matrices, but the change of basis rule differs
(physicists say: “they transform differently”): you conjugate M 7→
ATMA, rather than A−1MA, as you do for endomorphisms. As a
result, the classification is completely different. Rather than Jordan
form, over an algebraically closed field the only invariant is rank
(er, dim minus max isotropic dim (is this word for “space on which
restricts to 0”?). Over the reals, you get signature (aka, index: see
Sylvester’s theorem). Over Q and Z, life is much more interesting.

Note in particular that our usual invariants of matrices, like trace
and determinant and all, are not invariant – though if AT = A−1,
then conjugation by A doesn’t change ’em. Hence the characteristic
poly etc. reflects the metric properties of our basis, or rather of the
quadratic form w/r/t that basis.

These are pretty easy to understand: the determinant is the square
of the (absolute value of the) volume of the basis, w/r/t the form
(IE, the form defines a length, so the parallelepiped defined by the
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basis has a volume). Proof is immediate: if it’s an inner product, then
M = A∗IA, so detM = detA∗ detA = (detA)∗ detA.

Similarly, the trace is the sum of the (absolute values of the squares
of) norms of the basis. For the other symmetric polys, it’s similar:
sum of the (abs val of squares of the) areas of the squares determined
by pairs of basis vectors, etc.

Note that this is kinda goofy if your form is indefinite; also, I’m
not sure how to interpret minimal polynomial, or directly interpret
the characteristic poly.

5.2. Limitations of skeletons. The following is rather picky, but mat-
ters in some contexts, and for reasons of philosophy.

In a nutshell, ∼= 6==.
It’s not okay to just use Rn and not use abstract vector spaces, but

the reason why is a bit subtle, and is categorical. However, it should
feel wrong to think of Rn and (Rn)∗ as “the same space” – this is a
good gauge of how comfortable you are with duals. From the coor-
dinates point of view, the former consists of vectors, while the latter
is covectors – so for instance there’s a natural pairing of V∗ and V ,
but not of V and V . More sophisticated is that ∗ is a contravarient
functor, so there’s something weird here.

The difference is ultimately between = and ∼=: an isomorphism is
not the same thing as the identity.

concrete example: direct sum is “not commutative on the nose”
(but is associative) (same issue for tensor product)

In topology this destinction between = and ∼= (and “homotopic
to”) is important: H-spaces, A∞, loop spaces, etc.

———————————————————– quadratic forms, sym-
metric, etc. maps preserving a basis are lame; basis gives inner prod-
uct different bases give same inner product ...fibres are an O(n) foli-
ation of GL(n) ...and get O(n) as subgroup preserving an inner prod-
uct a choice of basis gives Sn < O(n) (heh: a clever student might
ask: does every Sn < O(n) correspond to a basis? This is a very
good question: it leads to representation theory, IE, how can groups
(of symmetries) be realized as linear symmetries, IE symmetries of a
vector space. Oh, and the answer is no – there’s lots of other inter-
esting ways to realize Sn as a subgroup of O(n), and the connection
between Sn and O(n) is very deep indeed; the “best answer” so far
is called “Springer theory”.) affine spaces: space of frames, etc.
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6. EXAMPLES AND APPLICATIONS

6.1. Polynomials, the Rational normal curve, and Algebraic Geom-
etry. A great example of spaces with several natural choices of basis
is Pn and (Pn)∗, the space of polynomials of degree at most n and its
dual (this discussion obviously extends to P∞ and (P∞)∗, the space
of polynomials of any degree, but then you have to be more careful
as it’s infinite-dimensional). For the base field, think of Q, R or C:
if we have a field of positive characteristic, life becomes rather more
complicated2.

A natural enough basis forPn is
{
1 = x0, x = x1, x2, . . . , xn

}
, which

has dual basis “take the kth coefficient”, IE{
a0x

0 + a1x
1 + a2x

2 + · · ·+ anxn 7→ ak | 0 ≤ k ≤ n
}

;

we will refer to this basis as “coefficient coordinates”. Note that
dimPn = n+ 1.

Another natural basis (or rather, way to produce bases) for P∗
n is:

evaluate at n+ 1 points. Remember that a polynomial of degree n is
determined by its value at n+1 distinct points (this generalizes “two
points determine a line” to higher degree; note that there’s another
way of generalizing: “three points determine a quadratic”, but also
“three points determine a plane”: degree or dimension (or both!)
can go up), so given {α0, . . . , αn} (yeah, we use α0 to avoid having to
write αn+1) distinct points, we get the basis

{p(x) 7→ p(αk)}

for P∗
n.

Exercise 6.1. Write out the corresponding dual basis for Pn.

The choice of n + 1 points seems a bit weird – after all, can’t we
evaluate a polynomial at any point in the base field? Yes, of course
we can, and that yields a map K → (Pn)∗, given by sending α to
evaluation at α.

In coefficient coordinates, α 7→ (1, α, α2, . . . , αn), which is a natu-
ral enough map in itself.

This map is called the rational normal curve, and is one of the Most
Beautiful Objects in mathematics. It has an absurd number of cool
properties, and is a basic object in algebraic geometry. Here’s one:
any n+1 points on it give a basis for P∗

n (as a polynomial of degree≤
n is determined by its value on any n+ 1 points), and it’s essentially
the only such curve!

2For instance, over Fq, the polynomials x and xq evaluate to the same value for
every α ∈ Fq. Weird, eh?
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Note that it’s not unexpected that we should be seeing algebraic
geometry: we’re talking about polynomials.

However, algebraic geometry also arises naturally from studying
vector spaces and linear algebra (the following is intentionally sketchy):
essentially, an element of the dual space is a “homogeneous linear
polynomial” (IE, polynomial of degree 1 with no constant term) on
a vector space, and quadratic forms are (homogeneous) quadratic
polynomials on a space.

After all, what is a polynomial? It’s a certain kind of function on a
space, so it takes in a point on the space and spits out a number. To
further characterize polynomials in the set of functions, we should
have a notion of “linear” polynomials (constants make sense with-
out any further structure though) – and that’s exactly what the dual
space does. So what’s a “quadratic” polynomial? It’s a product of
linear ones, or rather a sum of products.

This leads to the study of Symn V∗ and so forth, which is another
story, but the moral is simple: when you have a linear structure,
you have a notion of polynomial: linear algebra leads naturally to
algebraic geometry.
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7. EPILOGUE: SO WHAT is THE DUAL SPACE?

The dual space, while deceptively simple, has many useful char-
acterizations.
V∗ is. . . . . . Hom(V,K)

. . . coordinates on V

. . . hyperplanes in V [problem at zero] (dual to vectors in V)

. . . row vectors (to V ’s column vectors)

. . . homogeneous linear polynomials on V∗


