demo.nb

Integration by computer with Mathematica.

□ Calculus 153/22 M. Pergler April 1999

(this does the same math as the Maple handout, just using a different program so you see the difference in input syntax. Main differences: (a) Function names are capitalized (b) arguments have square brackets (c) You don't have to do the layout (brackets and shading)...*Mathematica* did that.)

$$f[x_] := (2 x^4 - 8 x^3 - 20 x^2 + 216 x - 286) / (x^5 - 11 x^4 + 58 x^3 - 134 x^2 + 21 x + 225)$$

Integrate[f[x], x]

$$-\frac{2}{-3+x}-\frac{1}{2}\,\text{ArcTan}\!\left[\,\frac{4}{-3+x}\,\right]\,+\,\text{Log}\!\left[\,-3+x\,\right]\,-\,\text{Log}\!\left[\,1+x\,\right]\,+\,\text{Log}\!\left[\,25-6\,\,x+x^2\,\right]$$

Apart[f[x]]

$$\frac{2}{(-3+x)^2} + \frac{1}{-3+x} - \frac{1}{1+x} + \frac{2(-2+x)}{25-6x+x^2}$$

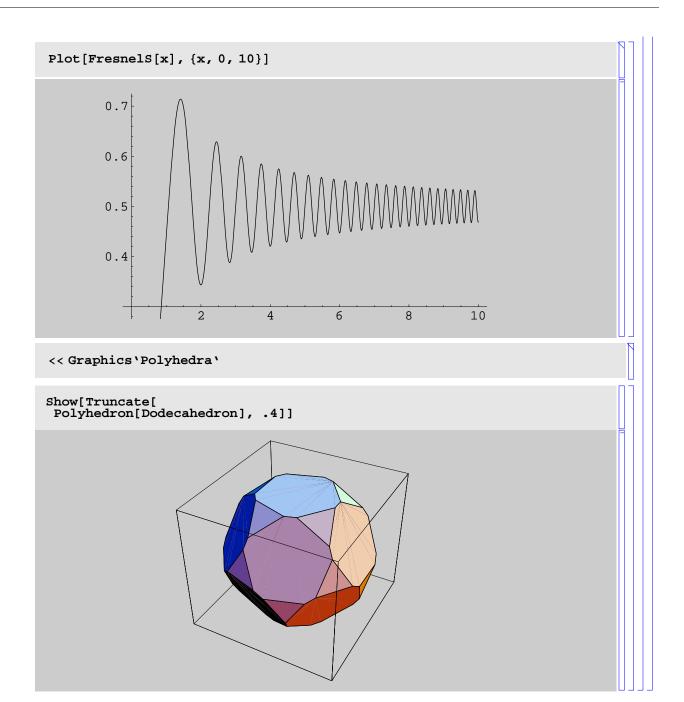
$$g[x_{-}] := (Sin[x] + Tan[Sqrt[x]]) (1 + Exp[1/x])$$

Integrate $[g[x], \{x, 1, 2\}]$

$$\int_{1}^{2} \left(1 + E^{\frac{1}{x}}\right) \; \left(\text{Sin}[x] + \text{Tan}\!\left[\sqrt{x}\;\right]\right) \; \text{d}x$$

N[%, 50]

11.96846920512586


Integrate[Sin[x^2], x]

$$\sqrt{\frac{\pi}{2}}$$
 FresnelS $\left[\sqrt{\frac{2}{\pi}} \ \mathbf{x}\right]$

Looking up FresnelS in the help browser....

- FresnelS[z] is given by $\int_0^z \sin(\pi t^2/2) dt$.
- FresnelS[z] is an entire function of z with no branch cut discontinuities.

demo.nb 2

