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The ln function plays three roles in one-variable calculus:

(R1) d
dxbx = (lnb)bx, in particular lnb = d

dxbx
∣

∣

x=0.

(R2) lnb =
∫ b

1
dx
x ; and

(R3) lnb = logeb, the logarithm with base “some crazy number”e.

“Traditional” elementary calculus texts, such as [1, 7, 8], define ln via (R2), and then use it
to define the numbere, the functionex, and finally the more general exponential functions
bx for different basesb. The roles (R1) and (R3) become computational facts. The main
reason for this roundabout approach is the difficulty of extending the definition ofbx from
x∈Q to x∈ R.

Some “reform” calculus texts, such as [3, 4], sidestep the extension issue altogether.
They introduce ln via (R3), and then observe its reapparance in (R1) and (R2), thus justi-
fying its importance. This is less roundabout, but foundationally incomplete.

Can one introduce ln via (R1) in a foundationally complete manner? We show the
answer is yes. Extending functions fromQ to R requires uniform continuity; apart from
this, only the definition of the derivative is necessary to define ln via (R1) and to show
(R3) is then satisfied. Some proofs can be simplified by use of the Mean Value Theorem.
Integration is only required to show ln thus defined also satisfies (R2).

While we briefly discuss some possible classroom approaches at the end, this note is
not intended for classroom use. In particular, many details one would need to present in
an elementary calculus class are omitted here, and many details presented below are best
sidestepped there. Few of the steps are truly new, but I don’t know of any other attempt to
put everything together in this manner.

1. RATIONAL EXPONENTIALS AND LOGARITHMS

Proposition-Definition 1 (Rational exponentials). For a fixed b> 0, the formula Eb(p/q)=
bp/q = q

√
bp defines a function Eb : Q→R+ satisfying thefundamental relationEb(x+y) =

Eb(x)Eb(y). The function Eb is therational exponential with baseb, and Eb(1) = b.

The fundamental relation is enough to recover the other standard rules for powers. For
instance,Eb(0) = 1 sinceEb(x+0) = Eb(x)Eb(0); andE(xy) = E(x)y, (y = p/q), first by
induction onp whenq = 1, and then by raising both sides to theqth power. It also follows
thatEb is monotonic (unlessb = 1) and hence invertible.

Proposition-Definition 2 (Rational logarithms). For a fixed b> 0, b 6= 1, the formula
Lb(x) = logbx= E−1

b (x) defines a function Lb : Range(Eb)→Q satisfying thefundamental
relationLb(xy) = Lb(x)+Lb(y). The function Lb is thelogarithm with baseb and Lb(b) = 1.

The fundamental relation implies the other standard properties of logarithms.
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2. IRRATIONAL EXPONENTS AND CONTINUOUS EXTENSIONS

A sketch-graph ofEb : Q→R+ (for fixedb) consists of an infinitely fine mesh of points
coalescing into a line, i.e.Eb is continuous as a function ofQ. This suggests definingbx

for all real x by just “connecting the dots”. Indeed, the following seems altogether too
believable.

Theorem 3(FALSE). Suppose Q is a dense subset of a set R, and let f: Q→ R be a
continuous function. Then there is a unique continuous functionf̃ : R→ R which extends
f , i.e. f̃ restricted to Q is the same as f .

To find f̃ (x), we approximatex by elementsx′ ∈ Q and setf̃ (x) = limx′→x f (x′). The
continuity of f should somehow imply that this limit exists and is unique. However, con-
sider any functiong : R→R which is continuous except for an essential discontinuity at an
irrational numberξ, and let f = g|Q. The functionf is continuous, but Theorem 3 breaks
down trying to definef̃ (ξ).

Theorem 4(Continuous extension from a dense set). Theorem 3 becomes true if f is uni-
formly continuous on all bounded subsets of Q. In this case,f̃ is uniformly continuous on
all bounded subsets ofR.

The proof starts along the lines outlined above, but ends up involving the completeness
of the codomainR as well as uniform continuity (see [6, Theorem 15.4], for instance.)

Even though it is “difficult”, I believe this theorem should be mentioned on some level
in “serious” calculus or beginning real analysis courses, because it underlies the use of
technology in mathematics! Plotting a function on a computer or graphing calculator in-
volves the machine calculating values on a fairly fine mesh of points and interpolating in
between on the screen. We then further interpolate between the individual pixels with our
eyes. The uselessness of technology for graphing the Dirichlet function (D(x) = 1 if x∈Q
andD(x) = 0 if x∈R−Q), or even the functionS(x) = sin(1/x), arises exactly from some
“crazy” lack of continuity and the associated difficulties in approximation. To what level it
is appropriate to discuss the uniformity hypothesis varies with the course and the students,
of course, but the functionS(x) begs at least a mention of it.

We verify below thatEb : Q→ R+ is uniformly continuous on bounded intervals. For
now, assume this and definebx for x∈ R asẼb : R→ R+, given by continuous extension
(dropping the ˜). The fundamental relation extends toR by continuity, and shows that the
extended function is also monotonic (unlessb = 1) and unbounded, so its range is all of
R+ and it has a continuous and monotonic inverseLb(x) = logbx.

Theorem-Definition 5 (Exponentials and logarithms). There is a one-to-one correspon-
dence between

1. Continuous functions E: R → R+, satisfying the fundamental relation E(x+ y) =
E(x)E(y), called exponentials.

2. Nonconstant continuous functions L: R+ → R, satisfying the fundamental relation
L(xy) = L(x)+L(y), called logarithms; and

3. Positive real numbers b, called bases.

The corresponding functions E and L are inverses; E(1) = b, L(b) = 1, E(x) = bx, and
bL(x) = x.

Sketch-proof.If E(x) is continuous and satisfies the fundamental relation (extended from
Q to R as above), thenE(px/q) = E(x)p/q as discussed after Proposition-Definition 1.
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This persists forp/q replaced by any real number by continuity, and so we conclude that
E(x) = E(1)x. The results for logarithms follow by similar arguments and inversion.

3. UNIFORM CONTINUITY OF Eb : Q→ R+

To showEb is uniformly continuous on bounded subsets ofQ, and thus to complete its
extension toR, we use the formula

|Eb(x)−Eb(y)|= Eb(y)|Eb(x−y)−Eb(0)|.
SinceEb is monotonic, it is bounded on any bounded interval, and so all we need to prove
is the following

Proposition 6. limx→0Eb(x) = 1 (x→ 0 throughQ).

We prove the case whereb > 1 andx→ 0+. The other cases follow similarly or by
substituting 1/b for b.

First proof. By the Pinching Theorem, it suffices to show 1≤ bx ≤ 1+ xb for 0 < x < 1.
Fix x and consider the functiong(b) = 1+bx−bx. Now,g′(b) = x(1−bx−1) > 0, sog(b)
is increasing. Sinceg(1) = x > 0, this meansg(b) > 0 for all b≥ 1.

In the above proof, we use the power rule only for rational exponents. However, we also
use a consequence of the Mean Value Theorem (or related ideas), namely that a function
with positive derivative on an interval is increasing there. With a bit more effort, we can
avoid this.

Lemma 7. If b > 1 and n is a positive integer, then1≤ b1/n ≤ 1+b/n.

Proof. This first inequality is clear. For the second, assumeb1/n > 1+ b/n. Thenb >
(1+b/n)n > 1+nb/n = b+1, a contradiction.

Second proof of Proposition 6.By Lemma 7 and the Pinching Theorem,Eb(1/n)→ 1. So
the limit is 1 asx→ 0+, since the values ofEb evaluated in between the points{1/n} are
constrained by monotonicity.

We can make the last sentence more explicit: find the integern such that 1/(n+ 1) ≤
x < 1/n. Thenn+1≥ 1/x, and son≥ 1/x−1 = (1− x)/x > 0. Hence, using Lemma 7
and monotonicity, we obtain an alternate pinching inequality

1≤ bx ≤ b1/n ≤ 1+b/n≤ 1+b
x

1−x
(1)

Here is yet another approach via geometric series. From Lemma 7, 1≤ b1/q≤ 1+b/q,
so that 1≤ bp/q ≤ (1+b/q)p. Expand the final expression using the Binomial Theorem,
noting that

(p
k

)

≤ pk, so that
(p

k

)

(b/q)k ≤ bk(p/q)k ≤ b(p/q)k. Thus we get a finite sub-
series of the infinite geometric series with first termb(p/q) and ratiop/q. Summing this
series recovers the equation (1).

4. THE DERIVATIVE OF bx

Theorem 8. There is functionλ : R+ → R such that for all b> 0, d
dxbx = λ(b)bx. In

particular, each Eb is a differentiable function.

For the moment, we won’t use the name “ln” forλ, until we show later that it is a
logarithm. For notational elegance, we can defineλ(b) = d

dxbx
∣

∣

x=0. We will need the
following

Lemma 9. Supposeα > 0 and z> 1. Then(1+α)z≥ 1+αz.
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First Proof, requiring MVT.Letg(α)= (1+α)z−(1+αz). We haveg′(α)= z(1+α)z−1−
z> 0 and sog is increasing (MVT!) forα > 0. Sinceg(0) = 0, this implies the Lemma.
(By continuity, we may restrict toz∈Q.)

Second Proof, no MVT but messier.Supposez∈ Q, so z = p/q, p > q. The Lemma is
equivalent to the relation

(1+α)p ≥ (1+αp/q)q(2)

Expand both sides using the Binomial Theorem, and callLk andRk the coefficients ofαk

on the left hand and right hand sides respectively. Then

Lk =
(

p
k

)

=
p(p−1) . . .(p−k+1)

k!
(3)

Rk =
(

q
k

)

(p/q)k =
q(q−1) . . .(q−k+1)

k!

( p
q

)k
.(4)

However, sincep > q, (p/q)(q− i)≤ (p− i) for all 0≤ i < q and soLk ≥ Rk for 0≤ k≤
p < q. Also,Lk > 0 = Rk for p < k≤ q. Sinceα > 0, this implies relation (2).

Proof of Theorem 8.The difference quotient for computingE′b(x) is

bx+h−bx

h
=

bh−1
h

bx

so it suffices to show that the functionF(x,h) = (xh−1)/h, defined forh 6= 0, tends to a
limit as h→ 0. GraphingF(x,h) for varioush strongly suggests that this is the case, and
that we should be able to prove it by some sort of pinching. An obvious idea is to calculate
F(x,h)−F(x,k), for small positiveh and small negativek, but this is a mess. Instead, we
remark that

F(x,−h) =
x−h−1
−h

= x−h 1−xh

−h
= x−hF(x,h), and(5)

F(x,kh) =
xkh−1

kh
=

1
k

F(xk,h).(6)

Suppose now thath > 1 andx > 1. Lemma 9 implies that

F(x,h) =
(1+(x−1))h−1

h
≥ 1+h(x−1)−1

h
= x−1.(7)

Applying this to the right hand side of (6) (withk > 0), we obtain

F(x,kh)≥ (1/k)(xk−1) = F(x,k)(8)

which impliesF(x,k) increases as a function ofk. Chasing through the sign changes and
applying (5) as required, we discover that this remains true for 0< x < 1 and regardless of
the sign ofk.

Finally, lettingh→ 0 in (5), we seeF(x,h)/F(x,−h)→ 1. SinceF(x,h) increases as a
function ofh, this impliesF(x,h) is pinched to a limitλ(x) ash→ 0.

This approach to differentiatingEb(x) = bx is similar to the standard proof thatd
dx sinx=

cosx. There one uses trigonometric identities to reduce to the evaluation of the limits
limh→0

sinh
h and limh→0

1−cosh
h , which are independent ofx. The reduction in thebx case

to the limit limh→0
bh−1

h is trivial. However, this limit is now a “strange” function ofb,
and proving this limit exists without yet being able to really get our hands on the function
values presents the main challenge.
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5. THE ANTIDERIVATIVE OF x−1

Observe thatF(x,h) =
∫ x

1 th−1dt. If we seth = 0, F(x,h) is no longer defined, but
∫ x

1 t−1dt must still be a well-defined function ofx by the Fundamental Theorem of Calcu-
lus.

Theorem 10. λ(x) =
∫ x

1 t−1dt and so d
dxλ(x) = 1/x.

Proof. The obvious idea is to just write
∫ x

1
t−1dt =

∫ x

1

(

lim
h→0

th−1)dt = lim
h→0

∫ x

1
th−1dt = lim

h→0
F(x,h) = λ(x).

This involves interchanging the limit and integral operations, which requires uniform con-
vergence. Alternatively, letΛ(x) =

∫ x
1 t−1dt. We claimΛ(x) = λ(x). Supposex > 1. If

h > 0, thenx−1+h < x−1 < x−1+h soF(x,−h) < Λ(x) < F(x,h) after integration. Butλ(x)
is the only function which satisfies this ash→ 0.

6. λ(x) AS A LOGARITHM

We now have three different but compatible interpretations (or definitions) ofλ(x). The
first two are the roles (R1) and (R2) stated in the introduction. The third is the “limit”
definition involving the ratioF(x,h), which which actually underlies both of the others.
We can use any of these to prove the following

Proposition 11. The functionλ(x) has the following properties:

1. λ(1) = 0, λ(x) > 0 for x > 1, andλ(x) < 0 for x < 1.
2. λ(xy) = λ(x)+λ(y).
3. λ is an unbounded increasing continuous function.

and thus is a logarithm.

It suffices to prove properties 1 and 2, and the continuity part of property 3. The increas-
ing and unbounded part of 3 is then automatic, since fory> 1 we getλ(xy) = λ(x)+λ(y) >
λ(x) andλ(xn) = nλ(x), andλ is not identically 1.

“Limit” proof. For property 1, supposex> 1. If h> 0, thenxh > 1, sohF(x,h) = xh−1>
0 and thusF(x,h) > 0. If h < 0, thenxh < 1, sohF(x,h) < 0 andF(x,h) > 0 as before.
Thus the limit functionλ(x) is positive. The casex < 1 is similar.

For property 2, leth→ 0 in the following identity:

F(xy,h) =
xh(yh−1)+xh−1

h
= xhF(y,h)+F(x,h).(9)

Finally, to seeλ is continuous, it suffices to check thatλ(xy)−λ(x) = λ(y) can be made
arbitrarily small fory close to 1. But this follows from fixing some smallh > 0 in the
pinching inequalityF(y,−h)≤ λ(y)≤ F(y,h).

“Derivative” proof. Property 1 is immediate. For property 2, calculated
dz

∣

∣

z=0(xy)z in two

ways. On the one hand, it equalsλ(xy)(xy)z
∣

∣

z=0 = λ(xy). On the other hand, writing
(xy)z = xzyz and using the product rule, it equalsλ(x)+λ(y). To prove continuity, use the
limit definition of the derivative and proceed as in the previous proof.

“Integral” proof. Property 1 and continuity follow directly from basic properties of the
integral and the Fundamental Theorem of Calculus. Property 2 follows from the standard
calculation d

dxλ(xy) = λ′(xy)y= y/(xy) = 1/x. Sinceλ(x) is itself an antiderivative of 1/x,
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λ(xy)−λ(x) is independent ofx, i.e. λ(xy) = λ(x)+ f (y) for some functionf (y). Finally
λ(1y) = λ(1)+ f (y) = f (y), so f (y) = λ(y).

Since lnx= λ(x) is a logarithm, there is necessarily some unique baseesuch that lne=
1. Furthermore, we can use the “integral” definition and the change of base formula to
differentiate logarithms with any base. Indeed, all logarithms and exponentials must not
only be continuous (as in Theorem-Definition 5) but also differentiable.

Some traditional calculus texts, such as [1, 7], prepare the shock of the “integral” defini-
tion of ln by first defining logarithms as asdifferentiablefunctions satisfying the fundamen-
tal relationL(xy) = L(x)+L(y). Then it is shown by change of variable thatL′(x) = L′(1)/x
and so ln is “natural” in thatL′(1) = 1. Differentiability as a requirement, however, is
somewhat unnatural in what is otherwise a calculus-free concept.

7. THE NUMBER e

In our approach, the basee is of course stillnatural, in that it is the base the logarithm
ln = λ happens to have. It thus makes other calculus formulas take on their easiest form, so
much so that for instance the formula ford

dxbx for generalb can now be safely forgotten,
its use replaced by the chain rule. However, the basee is notprivileged, in that it has no
foundational role validating the use of other bases.

We can push the analogy with trigonometric functions further, and say “e is the natural
parameter (=base) which solves the differential equationy′ = y” just as “π is the natural
parameter (=angle measure) which solves the differential equationy′′ =−y”.

The limit formulase= limx→0(1+x)1/x = limx→∞(1+1/x)x, used to define “the crazy
number”e in the third role (R3) of ln, can of course be obtained using the standard argu-
ment of computing limx→0(ln(1+ x)− ln1)/x in 2 ways; or via the following plausibil-
ity argument ([3, Section 4.3]): Since 1= lne = limx→0(ex− 1)/x, for x small we have
ex−1≈ x, hencee≈ (1+x)1/x.

8. CLASSROOM USE

This note arose from accumulated frustration. As an undergraduate taking “traditional”
elementary calculus, I felt that the definition ofbx via the “integral” definition of ln was
an unnatural conjuring trick—a feeling shared by many of my friends who are not profes-
sional mathematicians, but have taken a “traditional” calculus course, and still remember
the outline of the development—an admittedly rather selective set of qualifications! My
interest was also drawn by the note [2], where the pinching of the graph of lnx by graphs
of F(x,h) was “explained” by computing the limit using l’Ĥopital’s Rule.

Later, I grew to appreciate the conciseness and elegance of the “traditional” approach,
but my frustration increased when I started teaching calculus (in a “traditional” textbook
environment) and saw my students’ minds become tangled up in knots reconciling their
precalculus notion of logarithms with the new integral definition. To them, the “tradi-
tional” approach seems even more unnecessarily complicated than it had to me, since ap-
proximation is second-nature to those raised on a diet of graphing calculators. So I became
frustrated that the theoretical basis of approximation is not discussed in standard calculus
courses.
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Finally, my frustration reached its peak when I saw in [3] the motivationally undoubt-
edly “correct” approach of presentingddxbx ande beforeintegration—but without any dis-
cussion of the “definition” ofbx for irrationalx, and hence (to me) unsatisfyingly founda-
tionally incomplete. Could it be made complete without too much high-powered machin-
ery? If yes, then omission of some or even all of the details becomes a purely paedagogical
decision, along the same lines of one deciding which lemmas and calculations to skip or
merely glance over in reading a research paper. If no, then following that path is anexplo-
ration rather than adevelopmentof calculus— something philosophically quite different,
even if either can be fully appropriate depending on circumstances.

As this note indicates, itis possible to follow this approach quite rigorously, but the
amount of detail would be mind-numbing to any student struggling with understanding
calculus. However, the development falls naturally into modular segments

(S1) (a) Properties ofbx for x∈Q
(b) (Uniform) continuity ofbx for x∈Q
(c) Extension tox∈ R

(S2) (a) Reduction ofddxbx to F(x,h)
(b) F(x,h) increases withh
(c) F(x,h) is pinched to a limit.

(S3) lnx as antiderivative
(S4) lnx as logarithm
(S5) The role ofe

Each segment can be covered in detail, merely briefly mentioned, or developed via a se-
quence of guided exercises, largely independent of the treatment of the other segments.
Also (S4) and (S5) can at least partially precede (S3), which may take place much later,
after integration is covered.

In my moderately theoretical first-year calculus course at the University of Chicago,
based on [1], I largely gloss over the uniformity issues in (S1). I don’t prove (S2)(b), which
students find much more believable than theF(x,h)/F(x,−h) calculation in (S2)(c). I’ve
tried placing (S1),(S2), (S4) both before and after covering the Mean Value Theorem and
before integration. Classroom notes are available [5]. My students’ minds still get tangled
up in knots, but in different ones. Progress?
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