EXPONENTIALS AND LOGARITHMS “THE OTHER WAY”

MARTIN PERGLER

Theln function plays three roles in one-variable calculus:

(R1) £b*= (Inb)b%, in particular Ib = S b*|. ..

(R2) Inb= {9 and

(R3) Inb=log,b, the logarithm with base “some crazy number”
“Traditional” elementary calculus texts, such as [1, 7, 8], define In via (R2), and then use it
to define the numbeg, the functione®, and finally the more general exponential functions
b* for different base®. The roles (R1) and (R3) become computational facts. The main
reason for this roundabout approach is the difficulty of extending the definitibhfadm
xeQtoxeR.

Some “reform” calculus texts, such as [3, 4], sidestep the extension issue altogether.
They introduce In via (R3), and then observe its reapparance in (R1) and (R2), thus justi-
fying its importance. This is less roundabout, but foundationally incomplete.

Can one introduce In via (R1) in a foundationally complete manner? We show the
answer is yes. Extending functions fragnto R requires uniform continuity; apart from
this, only the definition of the derivative is necessary to define In via (R1) and to show
(R3) is then satisfied. Some proofs can be simplified by use of the Mean Value Theorem.
Integration is only required to show In thus defined also satisfies (R2).

While we briefly discuss some possible classroom approaches at the end, this note is
not intended for classroom use. In particular, many details one would need to present in
an elementary calculus class are omitted here, and many details presented below are best
sidestepped there. Few of the steps are truly new, but | don’t know of any other attempt to
put everything together in this manner.

1. RATIONAL EXPONENTIALS AND LOGARITHMS

Proposition-Definition 1 (Rational exponentials)For a fixed b> 0, the formula B(p/q) =
bP/d = /b defines a function & Q — R satisfying théundamental relatiofy (x+y) =
Ep(X)Ep(y). The function E is therational exponential with bade and E(1) = b.

The fundamental relation is enough to recover the other standard rules for powers. For
instanceEp(0) = 1 sinceE,(x+ 0) = Ep(X)Ep(0); andE(xy) = E(x)Y, (y = p/q), first by
induction onp wheng = 1, and then by raising both sides to tjtb power. It also follows
thatEy, is monotonic (unlesb = 1) and hence invertible.

Proposition-Definition 2 (Rational logarithms) For a fixed b> 0, b # 1, the formula
Lp(x) =logyx= Egl(x) defines a function)= Rang€E,) — Q satisfying thdundamental
relationLy(Xy) = Lp(X) 4+ Lp(y). The function k is thelogarithm with basé and Ly(b) = 1.

The fundamental relation implies the other standard properties of logarithms.
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2. IRRATIONAL EXPONENTS AND CONTINUOUS EXTENSIONS

A sketch-graph oEy, : Q — R™ (for fixed b) consists of an infinitely fine mesh of points
coalescing into a line, i.€p is continuous as a function . This suggests defininig
for all real x by just “connecting the dots”. Indeed, the following seems altogether too
believable.

Theorem 3(FALSE). Suppose Q is a dense subset of a set R, and 1&p £ R be a
continuous function. Then there is a unique continuous fundtioR — R which extends
f,i.e. f restricted to Q is the same as f.

To find f(x), we approximate by elements¢ € Q and setf (x) = limy_ f(X). The
continuity of f should somehow imply that this limit exists and is unique. However, con-
sider any functiolg: R — R which is continuous except for an essential discontinuity at an
irrational numbeg, and letf = g|Q. The functionf is continuous, but Theorem 3 breaks
down trying to definef (£).

Theorem 4(Continuous extension from a dense sétheorem 3 becomes true if f is uni-
formly continuous on all bounded subsets of Q. In this cse uniformly continuous on
all bounded subsets &.

The proof starts along the lines outlined above, but ends up involving the completeness
of the codomairR as well as uniform continuity (see [6, Theorem 15.4], for instance.)

Even though it is “difficult”, | believe this theorem should be mentioned on some level
in “serious” calculus or beginning real analysis courses, because it underlies the use of
technology in mathematics! Plotting a function on a computer or graphing calculator in-
volves the machine calculating values on a fairly fine mesh of points and interpolating in
between on the screen. We then further interpolate between the individual pixels with our
eyes. The uselessness of technology for graphing the Dirichlet fun@ioh € 1 if xe Q
andD(x) =0 if xe R—Q), or even the functio®(x) = sin(1/x), arises exactly from some
“crazy” lack of continuity and the associated difficulties in approximation. To what level it
is appropriate to discuss the uniformity hypothesis varies with the course and the students,
of course, but the functio(x) begs at least a mention of it.

We verify below that, : Q — R™ is uniformly continuous on bounded intervals. For
now, assume this and defibéfor x € R asEy, : R — R*, given by continuous extension
(dropping the ). The fundamental relation extend&tby continuity, and shows that the
extended function is also monotonic (unldéss: 1) and unbounded, so its range is all of
R* and it has a continuous and monotonic inverge) = logy .

Theorem-Definition 5 (Exponentials and logarithmsYhere is a one-to-one correspon-
dence between

1. Continuous functions ER — R™, satisfying the fundamental relation(¥+y) =
E(x)E(y), called exponentials.

2. Nonconstant continuous functions R™ — R, satisfying the fundamental relation
L(xy) = L(x) +L(y), called logarithms; and

3. Positive real numbers b, called bases.

The corresponding functions E and L are inverse$l)E= b, L(b) = 1, E(x) = b*, and
bt = x.

Sketch-proof.If E(X) is continuous and satisfies the fundamental relation (extended from
Q to R as above), theiE(px/q) = E(x)P/9 as discussed after Proposition-Definition 1.
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This persists fop/q replaced by any real number by continuity, and so we conclude that
E(x) = E(1)*. The results for logarithms follow by similar arguments and inversioriL]

3. UNIFORM CONTINUITY OFEp: Q — R™

To showEy, is uniformly continuous on bounded subset€fand thus to complete its
extension tR, we use the formula

|En(X) — En(Y)| = En(Y)|Eo(x—y) — Ex(0)].
SinceEy, is monotonic, it is bounded on any bounded interval, and so all we need to prove
is the following

Proposition 6. limx_0Ep(Xx) = 1 (x — 0 throughQ).

We prove the case whete> 1 andx — O*. The other cases follow similarly or by
substituting b for b.

First proof. By the Pinching Theorem, it suffices to show<b* < 1+ xbfor 0 < x < 1.
Fix x and consider the functiag(b) = 1+ bx— b*. Now, g’ (b) = x(1—b*"1) > 0, sog(b)
is increasing. Sincg(1) = x> 0, this meang(b) > 0 for allb > 1. O

In the above proof, we use the power rule only for rational exponents. However, we also
use a consequence of the Mean Value Theorem (or related ideas), namely that a function
with positive derivative on an interval is increasing there. With a bit more effort, we can
avoid this.

Lemma 7. If b > 1 and n is a positive integer, thein< bt/n <1+ b/n.

Proof. This first inequality is clear. For the second, asswh& > 1+b/n. Thenb >
(14b/n" > 1+nb/n=b+ 1, a contradiction. O

Second proof of Proposition 8y Lemma 7 and the Pinching TheoreB(1/n) — 1. So
the limit is 1 asx — 0T, since the values dfy, evaluated in between the poiris/n} are
constrained by monotonicity.

We can make the last sentence more explicit: find the integeich that 1(n+ 1) <
X< 1/n. Thenn+1>1/x and son > 1/x—1= (1—x)/x > 0. Hence, using Lemma 7
and monotonicity, we obtain an alternate pinching inequality

N 1< bXSbl/”§l+b/n§1+bﬁ

Here is yet another approach via geometric series. From Lemma B < 1+b/q,
so that 1< bP/9 < (1+b/q)P. Expand the final expression using the Binomial Theorem,
noting that(f) < p*, so that(}) (b/a)* < b%(p/q)¥ < b(p/a). Thus we get a finite sub-
series of the infinite geometric series with first ten(p/q) and ratiop/g. Summing this
series recovers the equation (1). O

4. THE DERIVATIVE OF b*

Theorem 8. There is functiom\ : R* — R such that for all b> 0, $bX=A(b)b*. In
particular, each f is a differentiable function.

For the moment, we won't use the name “In” fdr until we show later that it is a
logarithm. For notational elegance, we can defib) = %b"]xzo. We will need the
following

Lemma 9. Suppose > 0and z> 1. Then(1+a)*> 1+ az.
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First Proof, requiring MVT. Letg(a) = (1+a)?— (1+az). We havey () = z(1+a)> 1 —
z> 0 and sqg is increasing (MVT!) fora > 0. Sinceg(0) = 0, this implies the Lemma.
(By continuity, we may restricttae Q.) O

Second Proof, no MVT but messi&upposez € Q, soz= p/q, p > ¢. The Lemma is
equivalent to the relation

@) (1+a)? > (1+ap/q)?

Expand both sides using the Binomial Theorem, andlga#indR, the coefficients ok
on the left hand and right hand sides respectively. Then

_(P\ _P(P=1)...(P—k+1)
3 b= (k) - K
_(d k_d@=1...(a-k+1) pyk
However, sincg > ¢, (p/9)(q—1i) < (p—i)forall0<i < qgandsoLk > R for0< k<
p < q. Also, Ly > 0= R for p< k<qg. Sincea > 0, this implies relation (2). O

Proof of Theorem 8The difference quotient for computirigf,(x) is

prth — pX B b — 1bX
h ~h
so it suffices to show that the functiéi(x, h) = (X" — 1)/h, defined forh # 0, tends to a
limit as h — 0. GraphingF (x, h) for varioush strongly suggests that this is the case, and
that we should be able to prove it by some sort of pinching. An obvious idea is to calculate
F(x,h) — F(x,k), for small positiveh and small negativi, but this is a mess. Instead, we
remark that

—h _ _\h
) F(x,—h) =2 — 1 :xfhl_k’]‘ —x"F(x.h),  and

X1 1
= P Oh).

Suppose now thdt> 1 andx > 1. Lemma 9 implies that
1+ (x—1)h—1 _1+hx=1)-1

(6) F(x,kh) =

7 F(x.h) = P > n =x—1
Applying this to the right hand side of (6) (with> 0), we obtain
®) F(xkh) > (1/k) (X~ 1) = F(x.k)

which impliesF (x,k) increases as a function kf Chasing through the sign changes and
applying (5) as required, we discover that this remains true foxG< 1 and regardless of

the sign ofk.
Finally, lettingh — 0 in (5), we sed-(x,h)/F(x,—h) — 1. SinceF (x, h) increases as a
function ofh, this impliesF (x, h) is pinched to a limi\(x) ash — 0. O

This approach to differentiatirig, (x) = b* is similar to the standard proof th@;{sinx=
cosx. There one uses trigonometric identities to reduce to the evaluation of the limits
IimrH()L,?h and limy_o =52 which are independent of The reduction in th&* case

h
to the limit Iimh_@Lh‘l is trivial. However, this limit is now a “strange” function df,
and proving this limit exists without yet being able to really get our hands on the function

values presents the main challenge.
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5. THE ANTIDERIVATIVE OF X1

Observe thafF (x,h) = [{t"1dt. If we seth =0, F(x,h) is no longer defined, but
J3t~1dt must still be a well-defined function afby the Fundamental Theorem of Calcu-
lus.

Theorem 10. A(x) = [t~*dt and SOSA(X) = 1/x.

Proof. The obvious idea is to just write

X X X
/rldtz/ (Iimth’l)dtzlim/ 14t  lim F (x,h) = A(X).
1 1 “h—=0 h—0J/1 h—0

This involves interchanging the limit and integral operations, which requires uniform con-
vergence. Alternatively, lef(x) = [t~1dt. We claimA(x) = A(x). Suppose > 1. If
h > 0, thenx 1" < x~1 < x 1N soF (x, —h) < A(x) < F(x,h) after integration. Buh(x)
is the only function which satisfies this hs— 0. O

6. A(X) AS A LOGARITHM

We now have three different but compatible interpretations (or definitiorspof The
first two are the roles (R1) and (R2) stated in the introduction. The third is the “limit”
definition involving the ratid~ (x,h), which which actually underlies both of the others.
We can use any of these to prove the following

Proposition 11. The functiom\(x) has the following properties:

1. A(1) =0, A(x) > O0for x> 1, andA(x) < Ofor x < 1.

2. A(xy) = A(X) +A(Y).

3. Alis an unbounded increasing continuous function.
and thus is a logarithm.

It suffices to prove properties 1 and 2, and the continuity part of property 3. The increas-
ing and unbounded part of 3 is then automatic, sincg fofl we gefA(xy) = A(X)+A(y) >
A(x) andA(x") = nA(x), andA is not identically 1.

“Limit” proof. For property 1, suppose> 1. If h> 0, thenx" > 1, sohF(x,h) =x"— 1>
0 and thusF (x,h) > 0. If h < 0, thenx" < 1, sohF(x,h) < 0 andF(x,h) > 0 as before.
Thus the limit functiori(x) is positive. The case< 1 is similar.
For property 2, leh — 0 in the following identity:
XY 1)+ x" -1

(9) F(xy,h) = - =x"F(y,h) +F(xh).

Finally, to see\ is continuous, it suffices to check theixy) — A(X) = A(y) can be made

arbitrarily small fory close to 1. But this follows from fixing some sméll> O in the
pinching inequalityF (y, —h) < A(y) < F(y,h). O

“Derivative” proof. Property 1 is immediate. For property 2, calcul##zzo(xy)Z in two
ways. On the one hand, it equai$xy)(xy)?| o = A(xy). On the other hand, writing

=

(xy)? = x¥y* and using the product rule, it equaléx) + A(y). To prove continuity, use the
limit definition of the derivative and proceed as in the previous proof. O

“Integral” proof. Property 1 and continuity follow directly from basic properties of the
integral and the Fundamental Theorem of Calculus. Property 2 follows from the standard
calculationc?—xx(xy) =N (xy)y=y/(xy) = 1/x. SinceA(x) is itself an antiderivative of /x,
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A(xy) —A(x) is independent of, i.e. A(xy) = A(X) + f(y) for some functionf (y). Finally

A(ly) = A1)+ f(y) = f(y), sof(y) = A(y). 0
Since Ik = A(X) is a logarithm, there is necessarily some unique keaseh that Ire =

1. Furthermore, we can use the “integral” definition and the change of base formula to

differentiate logarithms with any base. Indeed, all logarithms and exponentials must not

only be continuous (as in Theorem-Definition 5) but also differentiable.

Some traditional calculus texts, such as [1, 7], prepare the shock of the “integral” defini-
tion of In by first defining logarithms as dgfferentiablefunctions satisfying the fundamen-
tal relationL(xy) = L(x) +L(y). Thenitis shown by change of variable th&tx) = L'(1) /x
and so In is “natural” in that’(1) = 1. Differentiability as a requirement, however, is
somewhat unnatural in what is otherwise a calculus-free concept.

7. THE NUMBER €

In our approach, the basds of course stillhatural, in that it is the base the logarithm
In = A happens to have. It thus makes other calculus formulas take on their easiest form, so
much so that for instance the formula fg){bx for generalbb can now be safely forgotten,
its use replaced by the chain rule. However, the lisenot privileged in that it has no
foundational role validating the use of other bases.

We can push the analogy with trigonometric functions further, and ség/the natural
parameter (=base) which solves the differential equaticay” just as ‘mis the natural
parameter (=angle measure) which solves the differential equgtien—y”.

The limit formulase = limy_.o(1+X)%* = limy_.(1+ 1/x)%, used to define “the crazy
number”e in the third role (R3) of In, can of course be obtained using the standard argu-
ment of computing lino(IN(1+X) —In1)/x in 2 ways; or via the following plausibil-
ity argument ([3, Section 4.3]): Since=2Ine = limy_o(€*—1)/x, for x small we have
e — 1~ x, hencee~ (14 x)Y/*,

8. CLASSROOM USE

This note arose from accumulated frustration. As an undergraduate taking “traditional”
elementary calculus, | felt that the definition Igf via the “integral” definition of In was
an unnatural conjuring trick—a feeling shared by many of my friends who are not profes-
sional mathematicians, but have taken a “traditional” calculus course, and still remember
the outline of the development—an admittedly rather selective set of qualifications! My
interest was also drawn by the note [2], where the pinching of the graphdfmgraphs
of F(x,h) was “explained” by computing the limit using I®pital’s Rule.

Later, | grew to appreciate the conciseness and elegance of the “traditional” approach,
but my frustration increased when | started teaching calculus (in a “traditional” textbook
environment) and saw my students’ minds become tangled up in knots reconciling their
precalculus notion of logarithms with the new integral definition. To them, the “tradi-
tional” approach seems even more unnecessarily complicated than it had to me, since ap-
proximation is second-nature to those raised on a diet of graphing calculators. So | became
frustrated that the theoretical basis of approximation is not discussed in standard calculus
courses.
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Finally, my frustration reached its peak when | saw in [3] the motivationally undoubt-
edly “correct” approach of presentirﬁbX ande beforeintegration—but without any dis-
cussion of the “definition” ob* for irrationalx, and hence (to me) unsatisfyingly founda-
tionally incomplete. Could it be made complete without too much high-powered machin-
ery? If yes, then omission of some or even all of the details becomes a purely paedagogical
decision, along the same lines of one deciding which lemmas and calculations to skip or
merely glance over in reading a research paper. If no, then following that patkeipbn
ration rather than alevelopmentf calculus— something philosophically quite different,
even if either can be fully appropriate depending on circumstances.

As this note indicates, is possible to follow this approach quite rigorously, but the
amount of detail would be mind-numbing to any student struggling with understanding
calculus. However, the development falls naturally into modular segments

(S1) (a) Properties df* for x € Q
(b) (Uniform) continuity ofb* for x € Q
(c) Extensiontx e R
(S2) (a) Reduction of-b* to F(x,h)
(b) F(x,h) increases witfn
(c) F(x,h)is pinched to a limit.
(S3) Inx as antiderivative
(S4) Inx as logarithm
(S5) The role ok

Each segment can be covered in detail, merely briefly mentioned, or developed via a se-
quence of guided exercises, largely independent of the treatment of the other segments.
Also (S4) and (S5) can at least partially precede (S3), which may take place much later,

after integration is covered.

In my moderately theoretical first-year calculus course at the University of Chicago,
based on [1], | largely gloss over the uniformity issues in (S1). | don’t prove (S2)(b), which
students find much more believable than B, h)/F (x,—h) calculation in (S2)(c). I've
tried placing (S1),(S2), (S4) both before and after covering the Mean Value Theorem and
before integration. Classroom notes are available [5]. My students’ minds still get tangled
up in knots, but in different ones. Progress?
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