Taylor's Theorem

1. Introduction. Suppose *f* is a one-variable function that has n + 1 derivatives on an interval about the point x = a. Then recall from Ms. Turner's class the single variable version of Taylor's Theorem tells us that there is exactly one polynomial *p* of degree $\leq n$ such that p(a) = f(a), $p'(a) = f'(a), p''(a) = f''(a), \dots, p^{(n)}(a) = f^{(n)}(a)$. This polynomial is given by

$$p(x) = f(a) + f'(a)(x-a) + \frac{f'(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}}{n!}(x-a)^n$$

We also know the difference between f(x) and p(x):

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

where ξ is somewhere between *a* and *x*.

The polynomial *p* is called the **Taylor Polynomial** of degree $\leq n$ for *f* at *a*.

Before we worry about what the Taylor polynomial might be in higher dimensions, we need to be sure we understand what is a polynomial in more than one dimension. In two dimensions, a polynomial p(x, y) of degree $\leq n$ is a function of the form

$$p(x,y) = \sum_{i,j=0}^{i+j=n} a_{ij} x^i y^j$$

Thus a polynomial of degree ≤ 2 (perhaps more commonly known as a quadratic) looks like

$$p(x,y) = a_{00} + a_{10}x + a_{01}y + a_{11}xy + a_{20}x^2 + a_{02}y^2.$$

I hope it easy to guess what one means by a polynomial in three variables, (x, y, z), or indeed, in any number of variables.

Now, how might we extend the idea of the Taylor polynomial of degree $\leq n$ for a function *f* at a point **a** ? Simple enough. It's a polynomial $p(\mathbf{x})$ of degree $\leq n$ so that

$$\frac{\partial^{i_1+\ldots+i_q}f(a)}{\partial x_1^{i_1}\partial x_2^{i_2}\ldots\partial x_q^{i_q}} = \frac{\partial^{i_1+\ldots+i_q}p(a)}{\partial x_1^{i_1}\partial x_2^{i_2}\ldots\partial x_q^{i_q}},$$

for all $i_1, i_2, ..., i_q$ such that $i_1 + i_2 + ... + i_q \le n$.

This looks pretty ferocious in general, so let's see what it says for just two variables. In this case, we have $\mathbf{a} = (a, b)$ and the Taylor polynomial p(x, y) at \mathbf{a} becomes the polynomial such that

$$\frac{\partial^{i+j}f(\mathbf{a})}{\partial^i x \partial^j y} = \frac{\partial^{i+j}p(\mathbf{a})}{\partial^i x \partial^j y},$$

for all $i + j \leq n$.

Example

Let $f(x,y) = \cos(x+y)$, and let $p(x,y) = 1 - \frac{x^2}{2} - xy - \frac{y^2}{2}$. Let's verify that p is the Taylor polynomial of degree ≤ 2 for f at (0,0). He we go.

$$f(0,0) = 1, \text{ and } p(0,0) = 1;$$

$$\frac{\partial f}{\partial x} = -\sin(x+y), \text{ and } \frac{\partial p}{\partial x} = -x-y;$$

$$\frac{\partial f}{\partial y} = -\sin(x+y), \text{ and } \frac{\partial p}{\partial y} = -x-y;$$

$$\frac{\partial^2 f}{\partial x^2} = -\cos(x+y), \text{ and } \frac{\partial^2 p}{\partial x^2} = -1,$$

$$\frac{\partial^2 f}{\partial y^2} = -\cos(x+y), \text{ and } \frac{\partial^2 p}{\partial y^2} = -1,$$

$$\frac{\partial^2 f}{\partial x \partial y} = -\cos(x+y), \text{ and } \frac{\partial^2 p}{\partial x \partial y} = -1.$$

Now it's easy to see that

$$f(0,0) = 0 = p(0,0);$$

$$\frac{\partial f}{\partial x}(0,0) = 0 = \frac{\partial p}{\partial x}(0,0);$$

$$\frac{\partial f}{\partial y}(0,0) = 0 = \frac{\partial p}{\partial y}(0,0);$$

$$\frac{\partial^2 f}{\partial x^2}(0,0) = -1 = \frac{\partial^2 p}{\partial x^2}(0,0);$$

$$\frac{\partial^2 f}{\partial y^2}(0,0) = -1 = \frac{\partial^2 p}{\partial y^2}(0,0); \text{ and}$$

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = -1 = \frac{\partial^2 p}{\partial x \partial y}(0,0).$$

Exercises

1. Verify that the polynomial in the Example is also the Taylor polynomial for *f* at (0,0) of degree ≤ 3 .

2. Let $f(x, y) = \sin(x + y)$. Which Which of the following is the Taylor polynomial of degree ≤ 2 for *f* at (0,0)? Explain. a) $p(x, y) = 1 + x^2 + y^2$ b) p(x, y) = xy

c)
$$p(x,y) = x^2 + xy + 2y$$

d) $p(x,y) = x + y$

2. **Derivatives**. Prior to finding a general recipe for the Taylor polynomial, we need look at finding higher order derivatives of certain composite functions. Let *f* be a real-valued function defined on a subset of \mathbf{R}^{q} . Suppose that in a neighborhood of the point **x**, the function *f* has a lot of continuous partial derivatives. Define the function *g* by

 $g(t) = f(\mathbf{a} + t\mathbf{h}),$

where $\mathbf{a} = (a_1, a_2, ..., a_q)$ and $\mathbf{h} = (h_1, h_2, ..., h_q)$. We know from the chain rule that g'(t) is given by

$$g'(t) = \nabla f(\mathbf{a} + t\mathbf{h}) \cdot \mathbf{h}$$

= $\left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_q}\right) \cdot (h_1, h_2, \dots, h_q)$
= $\left(h_1 \frac{\partial}{\partial x_1} + h_2 \frac{\partial}{\partial x_2} + \dots + h_q \frac{\partial}{\partial x_q}\right) f\Big|_{(\mathbf{a}+t\mathbf{h})}$

In keeping with our general practice of restricting ourselves to dimensions one, two, or three, let's look first at the case q = 2. As usual, we'll write $\mathbf{x} = (x, y)$ and $\mathbf{h} = (h, k)$. The expression for g'(t) now looks like:

$$g'(t) = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)f\Big|_{(\mathbf{x}+t\mathbf{h})}$$

We are now in business, for we have a nice recipe for higher order derivatives of g:

$$g^{(m)}(t) = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^m f\Big|_{(\mathbf{x}+t\mathbf{h})}$$

For example,

$$g''(t) = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2 f$$
$$= \left(h^2\frac{\partial^2}{\partial x^2} + 2hk\frac{\partial^2}{\partial x\partial y} + k^2\frac{\partial^2}{\partial y^2}\right)f$$
$$= h^2\frac{\partial^2 f}{\partial x^2} + 2hk\frac{\partial^2 f}{\partial x\partial y} + k^2\frac{\partial^2 f}{\partial y^2}$$

Example

Suppose $f(x, y) = x^2y^3 + y^2$. Let's find the second derivative of the function

$$g(t) = f(1+3t, -2+t)$$

First,

$$g''(t) = \left(3\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 f$$
$$= 9\frac{\partial^2 f}{\partial x^2} + 6\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2}$$

Now, $\frac{\partial f}{\partial x} = 2xy^3$, and $\frac{\partial f}{\partial y} = 3x^2y^2 + 2y$, and so $\frac{\partial^2 f}{\partial x^2} = 2y^3$, $\frac{\partial^2 f}{\partial y \partial x} = 6y^2$, and $\frac{\partial^2 f}{\partial y^2} = 6x^2y + 2$. Thus,

$$g''(t) = 18(-2+t)^3 + 36(-2+t)^2 + 6(1+3t)^2(-2+t) + 2$$

Exercises

3. Let $f(x, y) = xe^{y}$. Find the derivative of g(t) = f(1 + t, 3 - 4t).

4. Find the second derivative of the function *g* defined in **Problem 3**.

5. Let $F(u, v) = u^3 v + v^2$. Find the second derivative of R(z) = F(z, 3z).

6. Find g'''(t), where g is the function defined in the Example.

3. The Taylor polynomial. To find the Taylor polynomial for a function *f* of several variables at a point **a**, we shall simply apply the one-dimensional results to the function

$$g(t) = f(\mathbf{a} + t\mathbf{h}).$$

Thus,

$$g(t) = \sum_{m=0}^{n} \frac{g^{(m)}(0)}{m!} t^{m} + \frac{g^{(n+1)}(\xi)}{(n+1)!} t^{n+1},$$

where ξ is a number between 0 and *t*. Next, substitute t = 1 into the above:

$$g(1) = f(\mathbf{a}) = \sum_{m=0}^{n} \frac{g^{(m)}(0)}{m!} + \frac{g^{(n+1)}(\xi)}{(n+1)!}$$

We know the value of $g^{(k)}$ from **Section 2**:

$$f(\mathbf{a} + \mathbf{h}) = \sum_{m=0}^{n} \frac{1}{m!} \left(h_1 \frac{\partial}{\partial x_1} + h_2 \frac{\partial}{\partial x_2} + \dots + h_q \frac{\partial}{\partial x_q} \right)^m f(\mathbf{a})$$

$$+ \frac{1}{(n+1!} \left(h_1 \frac{\partial}{\partial x_1} + h_2 \frac{\partial}{\partial x_2} + \ldots + h_q \frac{\partial}{\partial x_q} \right)^{n+1} f(\mathbf{c})$$

The point **c** lies somewhere on the line segment joining **a** and $\mathbf{a} + \mathbf{h}$. The polynomial

$$p(\mathbf{h}) = p(h_1, h_2, \dots, h_q) = \sum_{m=0}^n \frac{1}{m!} \left(h_1 \frac{\partial}{\partial x_1} + h_2 \frac{\partial}{\partial x_2} + \dots + h_q \frac{\partial}{\partial x_q} \right)^m f(\mathbf{a})$$

is the Taylor polynomial of degree $\leq n$ for f at \mathbf{a} ; the last term is traditionally called the **error term** or sometimes, the **remainder term**. Actually, if we let $\mathbf{h} = \mathbf{x} - \mathbf{a}$, then $q(\mathbf{x}) = p(\mathbf{x} - \mathbf{a})$ is the thing we called the Taylor polynomial in the first section.

This is pretty fierce looking. Let's look at the two variable case:

$$f(a_1 + h, a_2 + k) = \sum_{m=0}^{n} \frac{1}{m!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^m f(a_1, a_2) + \frac{1}{(n+1!)} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{n+1} f(c_1, c_2)$$

where (c_1, c_2) is on the line joining (a_1, a_2) and $(a_1 + h, a_2 + k)$.

Example

Let $f(x, y) = \sin x \sin y$. For n = 2 and $\mathbf{a} = (0, 0)$, Taylor's polynomial becomes

$$p(h,k) = f(0,0) + h\frac{\partial f}{\partial x}(0,0) + k\frac{\partial f}{\partial y}(0,0) + \frac{h^2}{2}\frac{\partial^2 f}{\partial x^2}(0,0) + hk\frac{\partial^2 f}{\partial x\partial y}(0,0) + \frac{k^2}{2}\frac{\partial^2 f}{\partial y^2}(0,0)$$

We have $\frac{\partial f}{\partial x} = \cos x \sin y; \quad \frac{\partial f}{\partial y} = \sin x \cos y; \quad \frac{\partial^2 f}{\partial x^2} = -\sin x \sin y; \quad \frac{\partial^2 f}{\partial x \partial y} = \cos x \cos y; \quad \frac{\partial^2 f}{\partial y^2} = -\sin x \sin y.$ Thus,

$$p(h,k) = hk.$$

Let's get an estimate for how well this approximates $\sin x \sin y$ near (0,0). We know that

$$|\sin x \sin y - xy| = \left| \frac{1}{3!} \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right)^3 f(\xi, \mu) \right|$$

where (ξ, μ) is one the segment joining (x, y) and the origin. Now,

$$\left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)^3 f = x^3\frac{\partial^3 f}{\partial x^3} + 3x^2y\frac{\partial^3 f}{\partial x^2 \partial y} + 3xy^2\frac{\partial^3 f}{\partial x \partial y^2} + y^3\frac{\partial^3 f}{\partial x^3}.$$

Next, let's suppose that $|x| \le c$ and $|y| \le c$ for some constant *c*. Noting that all the partial derivatives in the above expression are simply products of sine and cosines, we can estimate

$$\left| \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right)^3 f \right| \le 8c^3,$$

and so, at last,

$$|\sin x \sin y - xy| \le \frac{8c^3}{6} = \frac{4}{3}c^3$$

Exercises

- 7. Find the Taylor polynomial of degree ≤ 1 for $f(x, y) = e^{xy}$ at (0, 0).
- 8. Find the Taylor polynomial of degree ≤ 2 for $f(x, y) = e^{xy}$ at (0, 0).
- 9. Find the Taylor polynomial of degree ≤ 3 for $f(x, y) = e^{xy}$ at (0, 0).
- **10**. Find the Taylor polynomial of degree ≤ 1 for $f(x, y) = e^x \cos y$ at (0, 0).
- **11**. Use Taylor's Theorem to find a quadratic approximation of $e^x \cos y$ at the origin.
- **12**. Estimate the error in the approximation found in Problem **11** if $|x| \le 0.1$ and $|y| \le 0.1$.