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An Axiomatic Approach to the Integral

Leonard Gillman

1. THE RIEMANN INTEGRAL. Have you ever watched an engineer or physicist
set up an integral? They don’t mention Riemann sums nor pick an arbitrary point
z, in the kth segment; they don’t even mention a partition. Instead, they draw
FiGure 1 (to use area as an example) and say: Here’s the strip at x of width dx
(where dx is small). Then dA is equal to [writing it down]

f(x)dx.

Then they prefix an integral sign.

f

x x + dx

Figure 1

This invariably gets a good laugh at a lecture. Maybe instead it deserves
applause for being so efficient and logical. Concentrating on a single segment
permits circumventing the notational paraphernalia of all those subscripts. Calling
the width dx permits skipping the summation sign and going directly to the
integral sign. (Some concerned teachers will argue that it is better to remind the
student of the sums on which the integral is based. Others will liken that to solving
quadratics by completing the square.)

The usual way is to pick an arbitrary z, in the kth segment of a partition, form
the corresponding Riemann sum, and proclaim that since arbitrary Riemann sums
approach the integral (as the norm goes to 0), so then do these arbitrary sums. But
then so do particular sums. The practicing scientist picks z, = x;_;. (It is assumed
in all this that f is continuous.)
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Actually, there are applications in which one traditionally chooses a particular
z,—for example, in length of arc, where z, is determined from the Mean-Value
Theorem. (By that time the students are wondering whether it’s legal.) Our
scientist sticks to z, = x,_, here as well. Presumably the resulting partial sums
also approach “what should be” or “what the physicists intuition affirms is” the
volume, or the work, etc.

2. THE DARBOUX INTEGRAL. Can this hope be replaced by a theorem? We
suggest an approach based on the Darboux integral, defined as the unique number
lying between all lower sums and all upper sums. Probably every calculus text bases
at least one of its derivations on this condition. We will exploit it systematically.
Our point of departure is the well-known properties of additivity and ‘“between-
ness”:

(A) ]:+AXQD _ /;x¢ + fx+Ax¢,

X

(B) ( min go) Ax < fx+quo < ( max qo) Ax
[x, x+Ax] x [x,x+Ax]
(where ¢ is continuous on an interval [a, b], and a <x <x + Ax < b).

It should come as no surprise that the integral is the only function satisfying (A)
and (B); this is stated formally as Theorem 1 below. In each application, to show
that the quantity of interest is an integral, we show that it has these two properties.
As a result, our intuition is relieved of the responsibility of making predictions
about infinite processes. (We don’t even mention Riemann sums.) Instead our
assumptions refer to concepts that are more real to the student, such as that the
area of an enclosing region is greater than that of the enclosed region; and we put
these assumptions up front. Integrals are thus derived as theorems rather than
announced as definitions. As a byproduct, we know that the volume by either discs
or shells will be the same, that the area by either rectangular or poelar coordinates
will be the same, and so on.

In the usual treatment of the integral, after all the elaborate preparation, there
always comes that anticlimactic moment when you confront a nonRiemann sum
and have to mumble that yes, that will work too but the proof is too hard for this
course. (The rough-and-ready scientist skirts around this problem.) Our more
general Theorem 2 covers these cases as well.

Most of all this has been done before in various degrees of thoroughness, but a
review seems worth while. What I believe to be new are the improved version of
the general theorem, a more natural axiom for surface area, and the observation
that this axiom and those for arc length are equivalent (in the presence of
additivity) to the corresponding formulas.

3. BACKGROUND

Theorem 1. Let ¢ be continuous on an interval [a, b), and let I be defined for
a <u <v <b. Suppose that

(A) I;+Ax — I: + I;C\:+Ax

and

(B) ( min (p) Ast;+AxS( max o) Ax,
[x,x+Ax] [x,x+Ax]
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when Ax > 0. Then

b
P = x) dx.
. fa e(x)
Note that (A) includes the condition I? = 0 (the case x = a).

Proof: Consider an arbitrary partition of [a, b]. By hypothesis, (B) holds for every
segment [x, x + Ax]. Hence by (A) (applied repeatedly), the lower and upper sums
L and U satisfy L < I? < U. Therefore I? is the Darboux integral.

The earliest reference I know to the properties (A) and (B) as characteristic of
the integral is Hahn and Rosenthal [2, 149-150], which in fact adopts them as the
definition. 1 believe that Howard Levi [4, 60—70] is the first to recognize that they
characterize the integral and then follow up by invoking them systematically in
applications; this book, with its wealth of imaginative ideas, deserves to be better
known. Serge Lang [3] also invokes this characterization. Gillman and McDowell
[1] adopts (A) and (B) as the definition of the integral and applies them systemati-
cally to an extensive selection, including polar coordinates and multiple integrals.
The two-variable version of Theorem 1 permits an effortless proof that the value of
the double integral is given by each of the two iterated integrals.

This illustrates the advantage in using (A) and (B) rather than the Darboux
integral itself, which is essentially the same thing: they focus attention on the
underlying principles. (Recall that (A) and (B) constitute the two steps of the proof
of the Fundamental Theorem of Calculus.)

We now illustrate some standard geometric applications. The letters A4,V, L, S,
with appropriate indices, represent area, volume, arc length, surface area.

4. APPLYING THEOREM 1. The bread-and-butter problems are (a) the area
under the graph of a function f, and (b) the volume generated by revolving the
graph of f about the x-axis. Most textbooks use a betweenness argument in these
two problems, so for them we describe our method only in outline. In (a), we
bound the area on [x, x + Ax] by two rectangular regions on that same base, of
heights min f and max f; then we use the fact that the area of a rectangle is the
product of its dimensions, and the axiom about the areas of enclosed and enclosing
regions. In (b), we bound the volume on [x,x + Ax] by two right circular
cylinders, of radii min f and max f; then we use the fact that the volume of a right
circular cylinder is 7rr2h, and the axiom that if one of two solids encloses another,
the enclosing one has the larger volume.
We proceed to examples where the bounds are less obvious.

Example 1. Length of arc. Let f and f' be continuous on [a, b]. To define the
length of the graph of f, first note axiom (A): LX*4* = L% + LET4%,

Now we look at Ficure 2 and wonder what to do. The chord of the arc is a
lower bound for the length; what is an upper bound? A cue is the observation that
of two straight-line graphs on the same interval, the one with the larger absolute
slope is the longer (FIGURE 3). We extend this principle to graphs with variable
slopes. Imagine walking across a field, heading eastward but edging north as you
go. Suppose I do the same, keeping due north of you at all times and, at every
instant, heading more northward than you (FiGure 4). Everyone agrees I walk

farther than you. Also, south is as good as north. We summarize this in the axiom:
(L) Iflfi(t)l < |fs(t)|foreach tin[x, x + Ax],then Ly **(f;) < Li***(f,).
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According to this axiom, the segment on [x, x + Ax] with slope min|f’| is
shorter than the graph, which in turn is shorter than the segment with slope
max|f'|. (Here and later we could state the axiom for the special case and then it
would look less forbidding.) Noting that the length of a segment of slope m is
V1 + m? Ax, and that y/1 + min|f/|*> = miny/1 + f? and similarly for the max, we
have

min 1+ f2Ax <L**%** < max 1+ f?Ax. (1)

[x,x+Ax] [x,x+Ax]

This is property (B) with respect to the function ¢(x) = {1 + f’(x)z. By Theo-

rem 1,
- fab\/a + £1(x) dx. (2)

Note that we never did use the original chordal lower bound. The weaker lower
bound in (1) is adequate, and its value is expressible directly, without the Mean-
Value Theorem.

Axiom (L) is stated and applied in [4] and again in [1]. It may be that the notion
of approximating an arc by chords holds such a strong intuitive appeal that the
foregoing derivation may be dispensed with. In any case, we will want these ideas
in the discussion of surface area, where intuition tends to be weak.

5. SETTING UP INTEGRALS. Let us recapitulate. To set up an integral on [a, b],
consider a typical subinterval [x, x + Ax]. Denote by I” the quantity in the
application to be represented by the integral. First verify the properties (A) and (B)
within the field of application—on the basis of knowledge of the field, or intuition,
or advice from a physicist, etc. From then on, the rest is mathemattcs Theorem 1
tell us that I? is the integral.

To verify (A) and (B): (i) Draw a picture. (i) Verify (A). This is an axiom in the
application and turns out to be automatic in just about every case. (iii) Find a
formula that holds when all the variables are constants. (iv) Use this formula, along
with additional axioms for the application, to obtain the bounds to be used in (B).
Note that (B) is a theorem in the application.

6. THE GENERAL THEOREM. Theorem 1 proves to be inadequate in many
applications, as we will shortly see. We need the following generalization.

Theorem 2. Let ¢ be continuous on [a, b] and let I be defzned fora<u<v<b.
Suppose that for Ax > 0,

(A) I:+AX — I: + I;+Ax
and
(B") aAx < IF*%* < BAx,

where a and B both approach ¢(x) as Ax — 0. Then

b
;= fa ¢(x) dx.
Proof: We show as in the Fundamental Theorem that the function
F(x)=1I}
is an antiderivative of ¢. (The notation will be for the case Ax > 0.) By (A),
F(x + Ax) — F(x)  I*%~
Ax T TAx
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By (B),

x+Ax
Ix

Ax

<B.

Since a and B approach ¢(x) as Ax — 0, so does the quantity between them;
therefore F'(x) = ¢(x). Finally, by the other half of the Fundamental Theorem,

[o(x) =12~ 12 = 1.
a

A special case of this theorem appears in [4]. The full theorem is presented in
[1] for both the single and double integral, but the statements are somewhat
awkward and the proof for the double integral is &’s and §’s; I have since written
up a proof for myself modeled after the one just given.

7. APPLYING THE GENERAL THEOREM. The procedure for setting up inte-
grals is the same as that outlined in Section 5, except possibly in step (iv), where
there may be more than one choice for a and B.

Example 2. Area between two graphs. Let f and g be continuous on [a, b], with
f = g. To define the area between their graphs, I would first add the constant
|min;, ,; gl to both functions (if necessary) to reduce to the case g(x) > 0 for all x
(with the axiom that the area between'the graphs is not affected by the rigid
motion), then note (by an axiom of general additivity) that the area between f and
g is the area under f minus the area under g. But the very simplicity of the
problem, free of distractions, makes it a good one for illustrating our methods.
Again, we first note axiom (A): AXTA¥ = A% + fX+4%,

Consider the strip on [x, x + Ax] (Ficure 5). Is it an axiom that the area
between the graphs is greater than that of a rectangle on the same base with height
ming, ., 4, (f — &), and less than one of height max, ,.,(f — g)? Note that in
this example, the region does not contain any rectangle on that base of height

max f pe=—==ccececca- -
f
max(f — g)
min f
max g

mng Meemcccccccccccccccnccnaa -

x x + Ax

Figure 5
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ming, ,.a,(f — &), nor is it contained in any rectangle of height max;, ,.a,(f —
g). If you want that axiom nevertheless, then you obtain
min (f—g)Ax <A < max (f-g)Ax. 3)
[x,x+Ax] [x,x+Ax]
This is property (B), with ¢ = f — g, and you are finished.

However, the general theorem does not require your intuition to be that fine.
You need only compare regions of which one is a subset of the other. To get an
upper bound in the present example, pick the enclosing rectangle of height

max f-— min g.
[x,x+Ax] [x,x+Ax]
The loyver bound comes with a little twist. If min, ., A, f > max;, ,,a, & then
the strip encloses a rectangle of height
min f-— max g
[x,x+Ax] [x,x+Ax]
(FIGURE 5); otherwise, min, ., a,; f — max;, ,.a, & is zero or negative. In either
case,

( min f— max g)Ax S AXTAY < ( max f— min g) Ax.
[x,x+Ax] [x,x+Ax] [x,x+Ax] [x,x+Ax]

These inequalities are weaker than (3) and are not in the form (B). However,
each of the two bounds (in parentheses) approaches f(x) — g(x) as Ax — 0. The
inequalities are therefore of the form (B'), with ¢ = f — g. By the general theo-
rem,

4= [(f-o).

Example 3. Volume of a solid of revolution; shell method. Let f and g be
continuous on [a, b], where a > 0, and f(x) > g(x) for all x, and revolve the
region between the graphs about the y-axis to generate a solid. To define its
volume by the shell method, we again first note axiom (A): V4% = V¥ + V>+4x,

Consider the strip on [x, x + Ax] (Ficure 5). Its contribution to the total
volume is less than that from the enclosing rectangle of height max, ,. . f —
min, , A, & and is greater than that from the enclosed rectangle of height
ming, ., a,f — Max;, ..., 8 (perhaps a “negative” rectangle). The solid created
by rotating a rectangle is the difference between two cylinders; the formula for the
volume is V = 2m7h Ar, where Ar is the difference of the two radii, 7 is their
average, and £ is the height of the rectangle. Again we invoke the axiom that the
larger volume goes with the enclosing solid. Consequently,

277)?( min f— max g) Astx"*A"SZﬂm'c( max f— min g) Ax,
[x,x+Ax] [x,x+Ax] [x,x+Ax] [x,x+Ax]

where X = x + 3 Ax, the average radius. These inequalities are in the form (B'),
with @(x) = 27x[ f(x) — g(x)]. By the general theorem,

vh=2m[*x[f(x) - g(x)] dx.

Example 4. Length of an arc defined parametrically. For an arc defined by paramet-
ric equations x = f(¢), y = g(¢), where f, f', g, and g' are continuous on an
interval a < t < b, the idea is the same as in Example 1. Again we note axiom (A):
Lt+At = Lt.+ Lt+At

a a t *
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Consider the strip on [z, ¢t + At]. Will you accept as an axiom that:

IFfi(7)" + 81(7)" < fi(r)" + 83(7)” for each 7 in 1, ¢ + Ad],
then L'*A(f1, 1) < Li*2(f>, 82)?

If so, then you obtain

min /f?+ g% At < L% < max yf?+ g% At

[t,t+At] [¢,t+At]

This is property (B), with ¢(¢) = V f'(t)2 + g’(t)2 , and you are finished.
The general theorem does not require you to be so imaginative. Instead,
consider the following more pedestrian axiom:

IF 1F{(7)) = 1£3(7)] and |gi(7)| < |g4(7)]| for each 7 in [¢, + At],
then L' (f1, 8,) < Li*2'(f,, 85).

This leads to the inequalities

(LL,)

(LL)

min 2+ min g? At <L* <./ max f?+ max g?At,
[¢,t+At] [¢,t4+At] [¢,t+At] [¢, 1+ At]

which is property (B), with ¢(t) = \/ F/(t)* + g'(¢)*. By the general theorem,
Lo = [VF() + g1 a. (4)
a

Note that this agument carries over at once to the three-dimensional case
x =f@0), y =g(®), z = h(2).

Example 5. Area of a surface of revolution. Let f and f' be continuous on [a, b],
with f nonnegative. When the graph of f is revolved about the x-axis, it generates
a surface. To define the area of such a surface, we first note axiom (A): SF*4* =
S¥ 4 SETax

Now we need information about some basic surface of revolution. The simplest
is the one obtained by revolving a horizontal segment. If the length of the segment
is 4 and the radius of revolution is r, then the segment sweeps out a right circular
cylinder of radius r and “height” h; its area is 27k (found by the “slit-and-unroll”
procedure).

Consider two such cylinders with parameters r,, #; and r,, h,; obviously, if
rihy > ryh,, then the area of the first is greater than the area of the second. We
wish to find a similar comparison for revolving any two graphs. Perhaps you feel
confident that:

ROV + £i(1)F < (V1 + £5(2)? foreach tin [x, x + Ax],
then ST*2*(f) < SE+A%(f,).

If so then you obtain

27 min (f-V1+f?)Ax <874 <27 max (f-V1+f7%)Ax.

[x,x+Ax] [x,x+Ax]

This is property (B), with () = f(t)\/ 1+ f’(t)2 , and you are finished.
But again your intuition does not have to be that creative. Instead, consider the
cruder assumption that if the graph of f, lies below the graph of f,, and if
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fi

X x + Ax

Figure 6

Ifi| < If;| pointwise (FIGURE 6), then f; generates the smaller area:

Iffi(t) < fo(t) and |f1(2)| < |f5(¢t)| foreach tin[x,x + Ax],

S
) then s:785(£,) < 5785,
This axiom appears in [1] in a slightly different form. The present version follows
along the lines suggested by the referee as being more intuitive.
We return to the given function f. Its graph is (say) as in Ficure 7. The two
accompanying line segments serve as lower and upper bounds: the lower has

max f

min f —/

_ slope = mi“‘f’\

RN

x x + Ax

Figure 7
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maximum value min, , .4, f and slope min;, ..., |f'l; the upper has minimum
value max, ,,,;f and slope max;, ,,,lf'|. When revolved about the x-axis,
each segment generates a frustum of a cone. According to Axiom (S), the areas of
these frusta are lower and upper bounds (resp.) for the area generated by revolving
the graph of f. Now, the area of a frustum is equal to 27r7l, where 7 is the average
of the two extreme radii of revolution, and / is the slant height, the length of the
segment being revolved. (Slit and unroll again.) Consequently,

217)71( min /1 +f'2) Ax < §F4 < 27?2( max /1 + f7? ) Ax, (5)
[x,x+Ax] [x,x+Ax]

where y, and y, are the average radii (FIGURE 6). Since min, , ,,;f and
max, .,a.f both approach f(x)as Ax — 0, y, and y, also approach f(x). The

inequalities (5) therefore assert (B), with @(x) = 2mf(x)y1 + f(x)>. By the

general theorem,
8¢ =27 [*f ()1 + f(x) . (6)

8. EQUIVALENCE OF THE AXIOMS WITH THE FORMULAS. Are axioms (L),
(LL), and (S) convincing? Although self-evidence cannot be legislated, it may
nevertheless help to know that each one, in conjunction with (A), is equivalent to
the corresponding formula, (2), (4), or (6). We have seen in each case that the
axiom, together with (A), implies the formula. Conversely, each formula implies
(A), by additivity of the integral; and, clearly, (2) = (L), (4) = (LL,) = (LL), and
©6) = (Sy) = (S). o

I wish to thank the referee for an extremely careful reading of the manuscript
and for several thoughtful suggestions in addition to the contribution cited in
Example 5. I am also grateful to Dan Kalman for a number of helpful comments.
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