
CHAPTER 1

The structure and eventual end of math

1. Apologia

Skip this if you just want to get to my analysis; I include this be-
cause eschatology is deeply disturbing and offensive to many people
(see further discussion in my essays on eschatology).

To get it out of the way:
I do not believe that math is over or anywhere close to over. That’s
why there’s an “eventual” in the title: I believe that math will even-
tually end (possibly millenia from now), in some sense, and wish to
contemplate in what sense and what an end might look like, and
what the overall structure of math is, both as it’s visible now, and
how I imagine it’ll look in retrospect.

There are huge worlds to explore – the journey is very far from
over; I just want to speculate on how the view from the top will look.

2. Intro

How might math end – with a bang or a whimper?
I argue that math on the whole can be seen as a digraph of theo-

ries, with a highly interconnected core. Math is the study of abstract
patterns, and there are potentially very many of these, not neces-
sarily related: new fields may arise forever, and math as a whole
may never end. However, particular fields may end, and I expect the
field itself to likewise end. Particular subfields generally end with a
whimper, exhausting interesting results, and I expect the field as a
whole to gradually end in this way: not only all interesting results,
but all interesting fields, all interesting perspectives will eventually
be exhausted – this is my eschatology of science generally.

I expect the core of math to end in a more dramatic and satisfying
way, via developing a meta-mathematically closed theory.

I elaborated on the first end in “ω: with a whimper”, and on the
second in “Ω: with a bang”.

Below, I sketch an overview of the structure of mathematics, and
how I’m lead to these posited ends.
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3. Outline

Math, as a science (an abstract science), has a finite domain, and
will eventually be exhausted. More subtly, it’s infinite but it degen-
erates into randomness (just listing facts): there aren’t that many big
patterns, and you usually find them first; eventually you exhaust the
big and not-so-big patterns and just have myriad details.

See more in my essay “Eschatology of science” (on why I think
sciences end), and in “ω: with a whimper” (on this exhaustion).

Within math, there are subfields (“theories”), and theories spawn
theories; a classic example is how solving polynomials lead to Galois
theory, which lead to group theory. To wax biblical, X begat Y, Y
begat Z, and so forth. You can draw a digraph of theories, drawing
an arrow if one applies to the other (historically, was spawned by the
other).

This much is common to all sciences: one expects phenomena to
have a theory describing/explaining their structure, and for partic-
ular aspects to have their own specialized subfield. Math has two
special properties:

• Meta-math is math;
• This graph is very interconnected.

These facts are related. Regarding meta-math, because the theory
of math is more math (unlike physical science, where the theory of a
science is math), it means that math is self-referential: thus instead
of the graph being acyclic, you can have fields refer to each other, or
even to themselves. This is unlike in physical sciences, where there
is more direction, largely in terms of scale: to do biology it helps to
know chemistry, but knowing biology helps hardly at all in chem-
istry (beyond providing some examples). There are phenomena at
the same scale which interact (for example, the oceans and the at-
mosphere), and these are fascinating, but these are less pronounced
than in math.

Regarding the interconnectedness, I’d dub this “the unreasonable
effectiveness of mathematics in mathematics” (echoing Wigner’s “The
Unreasonable Effectiveness of Mathematics in the Natural Sciences”).
That is, math is more relevant to other math than you’d naively ex-
pect: mathematical theories have more (meta-)mathematical struc-
ture than you may expect, and the same mathematics recurs. For in-
stance, isn’t it surprising that eigenvalues of matrices tell you some-
thing (in fact, a great deal) in graph theory? Of course it’s possible to
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understand this connection1 (and any other specific connection), but
the very frequency is striking.

Now, all knowledge is related in some ways (often very long or
tenuous chains), and it is possible to do math that is not very relevant
to the rest (work out on the branches of the graph), but much math
is rather more closely related: there is a sense of an ordered whole.

One might imagine mathematicians as like blind folk, studying
different parts of at elephant (to use an old image), but the picture is
more beautiful than that: rather than studying a disconnected part
(like the trunk), fields of math instead provide different perspectives
on the whole enterprise.

I suggest that math is not only richly interconnected, but has a
“core” of particularly interconnected areas, and that this core, in ad-
dition to being particularly beautiful, may have a satisfying conclu-
sion, in a unified theory.

As examples of “central” areas, I’d suggest algebraic geometry
and Lie theory; they are connected with linear algebra and number
theory and complex geometry and differential equations and geome-
tries, for instance. I don’t have a good feel for how central algebraic
topology and geometric analysis are: they feel deep and central, as
in topological modular forms and Atiyah-Singer, but I don’t know
well enough.

If one actually wrote down this proposed digraph (say, by papers
and their references), I suspect you’d see this sort of core, and could
indeed quantify it (you’d also obviously note clumping in particular
subfields).

FIXME: draw a picture
Outside of this core, other areas are more tangential and have less

elegant theories, degenerating more quickly into tedium. These facts
are not independent: interconnections yield more elegant theories.

4. Others’ overviews of math

Two exceptional essays are Timothy Gowers’s “The Two Cultures
of Mathematics” and Terence Tao’s Simons Lectures (and ICM ad-
dress) on “the dichotomy between structure and randomness”.

I summarize these and relate them to each other and to my pic-
ture.

1To wit: geometric analysis says that you can understand geometric spaces by
studying analytical structures on them, and here I’m referring to eigenvalues of
the Lagrangian; think of a graph as a geometric object (in fact, a negatively curved
space).
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Gowers classifies mathematicians into “theory-builders and problem-
solvers”, not suggesting that there is a sharp distinction, but different
relative priorities. I prefer to refer to “theory-building and problem-
solving”, to make it clearer that these are different activities, but that
individuals engage in both. (I’m told this point of view originated
earlier, in Pal Turán’s 1970 speech on Alan Baker’s Fields Medal.)

Tao distinguishes structured and unstructured objects, and the
corresponding mathematical tools. He is particularly interested in
hybrid objects, and the question of disentangling the structured and
unstructured parts of such objects.

Particular fields are more or less structured, and feature more or
less theory-building versus problem-solving; I identify the core as
the most amenable to theory-building area, which generally coin-
cides with the most structured.

These are not sharp distinctions: even structured fields have un-
structured objects: algebraic geometry is a very structured field, but
the moduli space of curves of high genus (≥ 22 at least) is of gen-
eral type, hence has no nice, structured parametrization. Conversely,
even unstructured objects have some structure (Ramsey theory).

As an example of the value of problem-solving, even in a very
heavy theory area, consider Deligne’s proof of the Weil conjectures
(notably the analogue Riemann hypothesis) by a clever argument,
rather than by proving Grothendieck’s “standard conjectures”. It is
said that Grothendieck was uninterested in the proof, since it didn’t
contribute to his theory by proving the standard conjectures. On the
other hand, the standard conjectures remain unproven, over 30 years
later, validating Deligne’s approach.

Conversely, Andre Joyal’s categorification of generating functions
(as in Baez’s “This Week’s Finds” Week 202) is an example of the
value of theory-building in a problem-solving area.

Now, there is an obvious rough analogy between “structured ob-
jects = theory-building” and “unstructured objects = problem-solving”,
but this shouldn’t be taken too far. Obviously you can build a more
elaborate theory about structured objects (generic unstructured ob-
jects have no global symmetries, for instance), and thus studying
unstructured objects is more often problem-solving, but there are
general theories of unstructured objects (such as statistics, compu-
tation / algorithmic information theory, probabilistic results in com-
binatorics, and genericity results in analysis), and problem-solving
is very common and applicable about structured objects.

Note also that empiricism in math is most useful for unstructured
areas. In structured areas, they may reveal or suggest patterns, but
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you then expect there to be an elegant proof of that precise pattern.
These are really different kinds of math.

5. Centrality

Returning to centrality, being very structured is no guarantee of
centrality: the octonions and E8 and the Leech lattice and excep-
tional Lie and Jordan algebras and sporadic simple groups and Go-
lay codes and the corresponding Steiner systems are an extraordinar-
ily beautiful chapter in math – probably the most beautiful collection
of objects, but they feel far less central than the more mundane com-
plex numbers. One might say that they are too structured: they are
beautiful but inapplicable. Notably, the unitary groups are far more
relevant to physics than the exceptional groups.

The key point of centrality is not structure, but instead reference,
especially self-reference, and more generally mutual reference: an object
is central if its theory (the study of that object) both:

• is applicable to objects other than itself
• has structure of its own

. . . and if the object itself occurs in the structure of one of these other
theories, so it connects back to itself, or at least these fields have rich
connections, instead of being separate theories, each a deeper strata,
unrelated to the others.

A dramatic example of self-reference is representable functors,
which I elaborate in “Ω: with a bang”. For instance, moduli spaces
of curves are themselves algebro-geometric objects, and generalized
cohomology theories are represented by spectra.

By this measure, combinatorics looks not core because of a lack of
meta-mathematics: it has general principles (as Gowers describes),
but these are rough, and lack structure, so you can’t build a mathe-
matical theory of combinatorial principles.

A similar problem occurs in logic: it does have meta-mathematics
(in spades), and has applications to other areas (via model theory,
AIT, undecidability), but other areas are not applicable to it: it’s the
mutual connections that are most valuable.

Also, the applications of combinatorics and logic to other fields
are to “non-core aspects” of these fields.

These may simply be current limitations – deep new connections
arise with some frequency – or these fields may simply be relatively
peripheral.
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5.1. Ethics: value in mathematics. An obvious measure of value
in math is power a result that proves many other results is powerful.

Turning next to field, all else being equal, a result in a central field
is more valuable than an equally powerful result in a more periph-
eral field.

That said, deep results in relatively peripheral fields are still very
valuable and respected: very few (if any) mathematicians outside
of logic use Cohen’s set forcing, and the main external application
(you can safely reject the axiom of choice) is interesting but not par-
ticularly useful, but it is still considered an important and valuable
result, and Cohen got a Fields medal for his work.

6. Historical notes

6.1. Classical thread. I haven’t mentioned the roots of this di-
graph of math. Math is not hermetic and self-justifying (though it
can do: the theory is beautiful enough to justify studying on those
grounds alone): at the bottom are natural questions, either arising
mathematically (classically arithmetic, geometry and logic) or from
scientific applications (notably physics; more recently, gambling and
computers).

The interconnected core roughly corresponds to the thread com-
ing from the Greeks; logic has become very specialized and thus less
central, but geometry continues to be central (notably Klein’s Er-
langen program and philosophy, and also in the forms of analysis,
topology, and group theory), and arithmetic (in the form of number
theory) certainly is!

This is not a failure of imagination: math has come up with myr-
iad exotic concepts, but the most interconnected areas are mostly
connected to intuitive ideas.

6.2. New simple structures. Often the study of a complex area
reveals a simple basic structure, one that can be studied (say, by un-
dergraduates) without need the elaborate framework in which they
were first studied.

Topology is a dramatic example of this: it is a very elementary
concept that was not identified as worthy of study in its own right
until the 20th century.

Similarly, you can do algebraic geometry without studying ellip-
tic integrals, and Fourier theory without studying Bessel functions.

This is an extremely valuable aspect of math, making much of its
breadth accessible without first requiring great technicality. On the
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other hand, it means that many basic math classes are dry basic tech-
nicalities, (as the worst aspects of Bourbaki) rather than rich studies
of complex examples: PDEs are more engaging than measure theory,
though less elementary.

Again, I suspect that these new simple fields will eventually peter
out: there are only so many simple structures.

7. Structuralism in math

This notion of “increasingly complex patterns” and “more cen-
tral areas” underlies my structuralist point of view on math: math is
primarily about finding patterns, not solving problems – and as bril-
liant as the techniques people develop are, it has more the character
of discovery than invention.

Why? Because to the extent that math (or science) is about solving
problems, the answer will “often” be “have a computer try every-
thing” (as demonstrated in “ω: with a whimper”) – and this answer
is both unsatisfying and “not mathematical”. You can answer the
question, but you haven’t learned anything (beyond the answer),
and answering the next question is no easier – but that is what we
should expect in general. You’re not just looking for answers to ques-
tions, you’re looking for nice answers.

Proofs by routine applications of existing results are similarly not
respected, but that’s also because these results are easy, not just be-
cause they don’t reveal anything new.

The fact that “bad answers” aren’t as respected as “good answers”
indicates that this is a generally held aesthetic, even if not articu-
lated: revealing structure is “good math”; just answering isn’t espe-
cially good in and of itself.

Pragmatically, there’s nothing wrong with computer-assisted proofs,
as of the 4-color theorem or Kepler’s conjecture (other than the prac-
tical difficulty in verifying such a proof): after all, you’ve solved the
problem – however, this suggests that the result and the field “aren’t
that interesting”. The proofs of the 4-color conjecture and Kepler’s
conjecture are great achievements, but they don’t suggest interesting
structure to study further.

8. To conclude

So the upshot is:
• Math contains a large number of interconnected subfields
• I expect both these subfields individually, and the entire en-

terprise, to eventually end (or rather, degenerate into tedium).
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• To some extent math is irreducibly diverse: the subfields are
simply different phenomena.

• There is a certain core of highly interconnected fields, which
may have a elegant end.

From what I know, math has come a very long way, and has a
long way yet to go. One can take this as intimidating or exciting (so
much to learn; so much yet to do!), and shouldn’t expect ultimate
closure in this lifetime.

Indeed, even in a particular field, closure may be centuries away,
and is futile to expect: of Grothendieck’s work on foundations of
algebraic geometry, David Ruelle says: “He had achieved level −1

and was working on level 0 of something that must be 10 levels
high.. . . At a certain age it becomes clear you will never be able to
finish the building”.

Practically, we’ve many objects to study, theories to build, prob-
lems to solve, and should take joy and get satisfaction from the par-
tial answers, the steps on the way.

Math is building (or revealing) a cathedral, and while we will not
live to see it done, we can delight in the individual contributions and
slow but perceptible progress.


