
CHAPTER 1

Point-wise models of the lower floors of the Postnikov
Tower, with Torus Bundles

Just as covering spaces kill π1, one can kill factors of Z in π2 via
torus bundles. This is a geometric form of the first stages of a Post-
nikov tower, with S1 = K(Z, 1).

1. Details

Disclaimer: I might have the indexing and terminology wrong.
Also, you need suitably nice spaces; I’m ignoring technicalities.

Recall that given a (connected) space X, there is a universal cover-
ing space X̃ → X, with fiber π1X = K(π1X, 0) (i.e., the (discrete) fun-
damental group, thought of as an Eilenberg-Mac Lane space), where
π1X̃ = 0, but otherwise the homotopy groups agree (via the long
exact sequence of a fibration, since the fiber is discrete).

In general we can kill homotopy groups in this way (from the
bottom up), and this is called a Postnikov tower1: you get a fibration

K(πn(X), n − 1) → Xn → Xn−1

where Xn is n-connected and the map Xn → Xn−1 is an isomorphism
on homotopy groups above n.

This construction is homotopical: the spaces Xn and the maps
are only defined up to homotopy, and in general must be infinite-
dimensional.

The first few stages can be done at the point-set level, which is
our subject here.

2. Point-set fiber bundles

For completeness and fun, let’s start at the bottom. The steps are:
• π0: path-connected component of basepoint
• π1: universal cover
• π2: torus bundle

1Or Postnikov system.
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2.1. Stage 0. Given a possibly path-disconnected space X, the 0th
stage in the Postnikov tower is “path-connected component of the
basepoint”. This admittedly feels like cheating, but X0 → X is a bona
fide fiber bundle: over points in X0, it has fiber a point ∗, while over
points in other components, it has empty fiber ∅.

2.2. Stage 1. As a reminder:
Given a path-connected space X, we can take its universal cover,
which is a fiber bundle with discrete fiber X̃ → X. The fundamental
group π1X acts on X̃ via deck transformations, and the fibers over
each point are π1X-torsors.

2.3. Stage 2. As a convenient non-standard notation, use f to in-
dicate “free part”

Given a simply connected space X, we can kill the free part of its
fundamental group by taking a torus bundle over X:

Tk → Xf
2 → X

where π2X
f
2 is the torsion of π2X (we’ve killed the free part), Tk is

a torus of dimension equal to the rank of π2X, and Xf
2 → X is an

isomorphism on homotopy groups above 2.
Formally, Xf

2 is 2-connected at 0, and the torus is the group quo-
tient π2X → π2X ⊗ R → Tk; one might denote this T(πf

2X) (the torus
of that free abelian group).

Note that torsion part is a canonical subgroup, while free part is
a quotient subgroup (T → G → F; apologies for the abuse of T ); this
is reflected in homotopy groups as:

π2X
f
2 → π2X → π1T

k

To construct this formally, take a fibration as in the Postnikov
tower, and then argue that you can choose the fibration to be a gen-
uine torus bundle.

2.3.1. Technical details. I don’t recall the usual construction of the
Postnikov tower; here’s an outline of why the fibration can be taken
to be a fiber bundle.

I think the obstruction to a spherical fibration being a sphere bun-
dle lies in the hocofiber of O(2) → HE(S1), (the obstruction to a ho-
motopy equivalence of the circle being linear; this is overkill (we just
need Homeo(S1)), as this gives us not just a circle bundle, but a plane
bundle). This hocofiber is trivial (the map O(2) → HE(S1) is a ho-
motopy equivalence), so a fortiori the obstruction vanishes. You can
see this because S1 = K(Z, 1) is a K(π, 1), so the space of maps is h.e.
to the maps of groups.
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Concretely, you can linearize any homotopy equivalence, which
you can do via a straight-line homotopy. Explicitly, fix a point ∗ ∈
S1; then HE(S1) → S1 via f 7→ f(∗) is a fiber bundle with fiber two
convex sets (corresponding to the homotopy equivalences 1 and −1),
each component of the fiber naturally based by the linear map in that
class (variationally, the minimum energy map in the class).

2.4. Summary of fiber bundles.

K(π0X,−1) →X0 → X

K(π1X, 0) →X1 → X

K(πf
2X, 1) →Xf

2 → X

Concretely,

∗ →X0 → X

π1X →X̃ → X

T(πf
2X) →Xf

2 → X

Note of course that these fiber bundles are twisted; if they were
trivial, rather than killing πk, they would add to πk−1: a trivial fiber
bundle with discrete fiber yields a disconnected space, and a trivial
torus bundle adds to π1 (I can’t see a step 0 analog).

3. Higher generalizations

This is as far as you can go for finite dimension – you can’t kill
other elements of homotopy by passing to a fiber bundle with finite
dimensional fiber.

You can’t kill torsion elements of π2 because K(Z/n, 1) is infinite
dimensional lens space, and you can’t kill free elements of π3 because
K(Z, 2) = CP∞ is infinite complex projective space. Similarly for the
other higher K(π,n).

Note that these spaces are necessarily infinite dimensional, since
their homology is infinite dimensional.

Even if you wanted to do this anyway, I’m not sure that the argu-
ment that it’s an actual fiber bundle (and not just a fibration) works.

Despite the above, I think I have heard of people doing this with
CP∞ (to kill π3), perhaps in TQFT?

4. Examples

A circle bundle is of this form iff the class of the fiber is null-
homotopic in the total space; this includes some familiar circle bun-
dles.
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The universal example is the tautological circle bundle on infinite
complex projective space:

S1 → S∞ → CP∞.

More suggestively,

K(Z, 1) → S∞ → K(Z, 2).

This yields the tautological circle bundle on finite dimensional
complex projective space S1 → S2n+1 → CPn, including (for n = 1)
the Hopf bundle S1 → S3 → S2.

The higher Hopf bundles are not of this form, in the sense that
S2 and S4 are not Eilenberg-Mac Lane spaces, while the lower Hopf
bundle S0 → S1 → S1 is a cover, though not the universal cover.


