
CHAPTER 1

Kodaira dimension and curvature

The Kodaira dimension is an invariant of a variety in algebraic
geometry that corresponds roughly to curvature.

This is vague; I list some connections below, particularly via clas-
sification of curves and surfaces, but I don’t know the whole story.
Some of the parts (the Enriques-Kodaira-Bombieri-Mumford classi-
fication of algebraic/complex surfaces, and Yau’s proof of Calabi’s
conjecture) are deep theorems.

A particularly nice consequence is that algebraic invariants are
defined over positive characteristic, hence we can extend our geo-
metric intuition of curvature to these settings.

1. Definition

Kodaira dimension is generally unfamiliar to non-(algebraic ge-
ometers). The definition is somewhat technical; intuitively, it’s “how
many dimensions you can recover from volume forms”, or “the num-
ber of independent volume forms (minus 1)”.

Most simply, it’s the projective dimension of the pluricanonical
ring:

κ(V) := dim Proj R(V,KV)

That is, let KV be the canonical bundle (the line bundle corre-
sponding to the canonical divisor; geometrically, the determinant
bundle of regular n-forms: the top exterior power of the regular
cotangent bundle). Then define a graded ring (called the pluricanon-
ical ring) by letting the nth graded component be sections of the nth
tensor power of the canonical bundle:

Rn(V,KV) := H0(V,nKV)

Geometrically, the pluricanonical bundle nKV corresponds to a
map to projective space, called the nth pluricanonical map, and we
can define the Kodaira dimension as the dimension of this image for
n sufficiently large.

Algebraically, projective dimension of a ring is 1 less than its
transcendence degree (think of Pn := Proj K[x0, . . . , xn]); from this
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point of view, Kodaira dimension is “number of independent vol-
ume forms (minus 1)”.

If the canonical divisor (and pluricanonical divisors) are not ef-
fective, so there are no regular volume forms, we conventionally take
the Kodaira dimension to be κ := −1; some use κ := −∞ (from the
“dimension of Proj” point of view, it’s whatever you consider the di-
mension of the empty set, and the convention dim ∅ = −∞ respects
additivity of dimension under products). Splitting the difference,
we’ll often simply say “negative Kodaira dimension”.

1.1. Basic Interpretation. Varieties of low Kodaira dimension are
“special” (they are quite restricted); varieties of maximal Kodaira di-
mension are called “varieties of general type”, and are less restricted:
a generic variety is of general type, as the name suggests.

This will be illustrated in the classifications below.

2. Connection to curvature

This is “as far as I can tell”.
Negative Kodaira dimension corresponds to positive curvature

(in some direction, not necessarily all directions), zero Kodaira di-
mension corresponds to flatness, and maximum Kodaira dimension
(general type) corresponds to negative curvature (I don’t have an in-
tuition for Kodaira dimension between 0 and maximum; based on
surfaces, I’d guess it corresponds to “negatively curved in some di-
rections, flat in others”).

The specialness of varieties of low Kodaira dimension corresponds
to the specialness of Riemannian manifolds of positive curvature
(think of theorems on pinched sectional curvature, like the 1/4 pinched
sphere theorem or Cheeger’s finiteness theorem), and general type
corresponds to the genericity of non-positive curvature (think of Joachim
Lohkamp’s theorem (Annals of Mathematics, 1994) that every mani-
fold of dimension at least 3 admits a negative Ricci curvature metric).

More topologically, negative Kodaira dimension corresponds to
positive Euler characteristic, zero Kodaira dimension to zero Eu-
ler characteristic, and positive Kodaira dimension to negative Eu-
ler characteristic. For positive Euler characteristic, the correspond-
ing vanishing of (co)tangent vector fields corresponds to the non-
effectiveness of the canonical divisor (there aren’t any non-vanishing
fields/pluricanonical maps), while negative Euler characteristic re-
flects ampleness of the canonical divisor (there are lots of non-vanishing
fields/pluricanonical maps).
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I don’t know how to show any of this directly, but it holds for the
classifications of curves and surfaces, which I elaborate below.

3. (Complex) Dimension 1

For complex curves (real surfaces), the correspondence between
Kodaira dimension and curvature is clear and exact:
genus space Kodaira

dimension
Euler char curvature

genus 0 S2 κ = −1 χ = 2 positive curvature
genus 1 T 2 κ = 0 χ = 0 zero curvature
genus 2+ Σg κ = 1 χ < 0 negative curvature

4. (Complex) Dimension 2

The Enriques-Kodaira classification of algebraic/complex surfaces
is a birational classification into families; coarsely by Kodaira dimen-
sion, then more finely. It is not as neat as the classification of curves,
and is not fully understood: recall that in algebraic geometry, there
are many families of varieties of a given dimension, and the situation
gets rapidly more complicated as dimension increases.

I give details for (minimal models of) complex algebraic surfaces
(which is what Enriques did); there are other families of non-algebraic
complex surfaces (which is Kodaira’s contribution) and algebraic
surfaces in positive characteristic (due to Bombieri and Mumford).

I emphasize the geometric connections.

4.1. Kodaira dimension κ = −1. Positively curved.

rational surfaces CP2: positively curved
ruled surfaces P1 fibrations over C (birationally, P1 × C): positively curved

in 1 complex dimension

4.2. Kodaira dimension κ = 0. Flat.
Abelian varieties tori, so flat

K3 surfaces and Enriques surfaces K3 is Calabi-Yau, so Ricci-flat; Enriques surfaces are an or-
der 2 quotient of K3 surfaces, hence likewise

hyperelliptic (aka, bielliptic) quotients of product of 2 elliptic curves: quotients of tori, so
flat

4.3. Kodaira dimension κ = 1. Flat in one dimension, nega-
tively curved in the other.

proper elliptic surfaces surfaces with a fibration over a curve, with fiber almost ev-
erywhere an elliptic curve. The base curve has genus at least
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2, else it’s improper and covered above (ruled, tori, biellip-
tic). Geometrically, these are flat in the vertical/fiber direc-
tion, and negatively curved in the horizontal/base direction.

4.4. Kodaira dimension κ = 2. These are called “surfaces of gen-
eral type”, and are poorly understood.

All negatively curved surfaces are of this type (by process of elim-
ination), but I don’t know if these are all negatively curved.

They all have positive Chern numbers.
A product of two curves of genus at least 2 (which is negatively

curved in both directions) is an example.

5. General Dimension

I don’t know much about varieties in dimension above 2; here are
some that I do know.

Rational varieties (projective space) have negative Kodaira di-
mension; geometrically, the Fubini-Study metric is positively curved
(sectional curvature ranges from 1

4
to 1).

Some examples with Kodaira dimension zero:
• Abelian varieties (complex tori); geometrically, these are flat.
• Calabi-Yau manifolds (like K3 surfaces); geometrically, these

are Ricci-flat (that is the content of the Calabi conjecture,
Yau’s theorem).

6. Personal Remarks

I did my BA thesis on the Enriques classification of complex alge-
braic surfaces, under Joe Harris (I mostly read “Complex algebraic
surfaces” by Arnaud Beauville), hence I was familiar with Kodaira
dimension.

My observation of the correspondence in dimension 1 (between
Kodaira dimension and uniformization), in Benson Farb’s “Geomet-
ric Literacy” lecture) is what sparked this essay.


